基于改進(jìn)核主元分析的過(guò)程監(jiān)測(cè)方法研究
[Abstract]:With the increasing scale and complexity of modern industrial process, how to ensure the safety of process operation and improve the quality of products are two urgent problems to be solved by industrial production enterprises. Process monitoring technology is an effective method to solve these two problems. However, due to the complexity and volatility of actual industrial processes, it is very difficult to establish and apply accurate process models, and the traditional theories and methods based on qualitative and quantitative models are limited to a certain extent. Due to the development of intelligent instruments and computer technology in industrial process applications, a large number of high-dimensional and strongly correlated process state data are collected and stored, it is difficult to remove redundancy and interference to extract useful information. As a method to deal with multivariate correlation, multivariate statistical process monitoring technology has been continuously concerned and developed in the past ten years. On the basis of previous work, this paper aims at the problem of parameter drift caused by equipment aging, process drift and sensor measurement error in nonlinear industrial process. The following research works have been done: (1) aiming at the problem of process samples increasing gradually or parameter drift, this paper combines the kernel principal component analysis method based on sliding window mechanism and the exponential weighted kernel principal component analysis method. An adaptive kernel principal component analysis method is proposed. When a new sample is collected, the sliding window is used to determine whether the sample satisfies the condition of model updating. If the model updating condition is satisfied, the exponential weighted kernel principal component analysis method is used to update the model, whereas the model update is not carried out until the next normal sample is collected. The method is used to monitor the working process of the fused magnesium furnace and the simulation results verify the feasibility of the method. (2) the traditional kernel principal component analysis method is based on the assumption that the sample does not contain the inferior points, but the actual data collected in the industrial process often contain the inferior points. Even if it is mapped to the feature space, the problem of inferior points still exists, which has a great influence on the model and results in inaccurate process monitoring. In order to solve this problem, an improved kernel principal component analysis method is proposed in this paper, which defines the loss function of the feature space in the sense of minimum reconstruction error, and solves the problem by using the penalty factor iterative kernel principal component analysis to eliminate the influence of inferior points. Moreover, the kernel matrix updating method based on forgetting factor is used to ensure that the model is more consistent with the change of process, and the reconstruction error is first calculated for the new sample to determine whether it is a bad point, and if it is a bad point, the reconstruction is later updated. If not, update the model directly. The simulation results show that the improved kernel principal component analysis method can reduce the influence of inferior points on the model and improve the accuracy of the model.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TB49
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 唐勇波;桂衛(wèi)華;彭濤;;代價(jià)敏感核主元分析及其在故障診斷中的應(yīng)用[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
2 李學(xué)軍;李平;蔣玲莉;;類均值核主元分析法及在故障診斷中的應(yīng)用[J];機(jī)械工程學(xué)報(bào);2014年03期
3 劉世成;王海清;李平;;基于多向核主元分析的青霉素生產(chǎn)過(guò)程在線監(jiān)測(cè)[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2007年02期
4 鄧曉剛;田學(xué)民;;基于免疫核主元分析的故障診斷方法[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年S2期
5 趙小強(qiáng);楊武;薛永飛;;可變窗自適應(yīng)核主元分析的化工過(guò)程故障診斷算法[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年S1期
6 李學(xué)軍;楊大煉;郭燈塔;蔣玲莉;;基于基座多傳感核主元分析的故障診斷[J];儀器儀表學(xué)報(bào);2011年07期
7 畢小龍;王洪躍;司風(fēng)琪;徐治皋;;基于核主元分析的傳感器故障檢測(cè)[J];動(dòng)力工程;2007年04期
8 鄭育平;張麗萍;;基于核主元分析的濕法煙氣脫硫系統(tǒng)的故障診斷[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年03期
9 姜萬(wàn)錄;吳勝?gòu)?qiáng);劉思遠(yuǎn);;指數(shù)加權(quán)動(dòng)態(tài)核主元分析法及其在故障診斷中應(yīng)用[J];機(jī)械工程學(xué)報(bào);2011年03期
10 王濤;李艾華;高運(yùn)廣;王旭平;蔡艷平;;一種并行遺傳優(yōu)化核主元分析算法[J];噪聲與振動(dòng)控制;2013年02期
相關(guān)會(huì)議論文 前6條
1 趙小強(qiáng);楊武;薛永飛;;可變窗自適應(yīng)核主元分析的化工過(guò)程故障診斷算法[A];2013年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第三分冊(cè))[C];2013年
2 鐘秉翔;;一種基于核主元分析的精簡(jiǎn)化建模方法[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)C卷[C];2011年
3 甘俊英;張有為;;核主元分析特征提取法的研究[A];第十一屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2003)論文集[C];2003年
4 崔桂梅;鄢常亮;馬祥;;基于核主元分析和支持向量機(jī)的高爐向涼、向熱故障診斷[A];中國(guó)計(jì)量協(xié)會(huì)冶金分會(huì)2010年會(huì)論文集[C];2010年
5 汪愛(ài)娟;張端金;介曉婧;;基于核主元分析的故障檢測(cè)[A];2013年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第四分冊(cè))[C];2013年
6 倪國(guó)文;劉愛(ài)倫;;基于核主元分析的非線性故障檢測(cè)研究[A];2009中國(guó)儀器儀表與測(cè)控技術(shù)大會(huì)論文集[C];2009年
相關(guān)博士學(xué)位論文 前1條
1 張敏;復(fù)雜生產(chǎn)過(guò)程質(zhì)量控制的智能方法研究[D];西南交通大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 李璐;石油鉆井過(guò)程井漏異常的預(yù)警技術(shù)研究[D];鄭州大學(xué);2015年
2 張薇;基于改進(jìn)核主元分析的過(guò)程監(jiān)測(cè)方法研究[D];東北大學(xué);2014年
3 胡志勇;基于核主元分析及擴(kuò)展方法的過(guò)程監(jiān)測(cè)[D];東北大學(xué);2011年
4 滕永懂;基于核主元分析的動(dòng)態(tài)過(guò)程監(jiān)測(cè)[D];東北大學(xué);2010年
5 李蓉一;基于核主元分析的故障檢測(cè)與診斷研究[D];南京師范大學(xué);2011年
6 楊武;基于改進(jìn)核主元分析的化工過(guò)程故障診斷研究[D];蘭州理工大學(xué);2013年
7 馮瑋;基于核主元分析的過(guò)程監(jiān)測(cè)方法研究[D];東北大學(xué);2013年
8 何巍;基于多塊核主元分析和概率符號(hào)有向圖的故障診斷方法研究[D];中南大學(xué);2013年
9 石晉明;基于粗糙集與核主元分析方法的柴油機(jī)故障檢測(cè)與診斷[D];中北大學(xué);2014年
10 高金鳳;基于數(shù)據(jù)驅(qū)動(dòng)的非線性過(guò)程故障診斷方法研究[D];沈陽(yáng)理工大學(xué);2014年
,本文編號(hào):2132721
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2132721.html