面向節(jié)能降耗目標(biāo)的間歇過程優(yōu)化控制
本文選題:間歇過程 + 在線優(yōu)化。 參考:《北京化工大學(xué)》2014年碩士論文
【摘要】:本文針對間歇過程優(yōu)化控制問題,主要圍繞該過程的優(yōu)化部分進(jìn)行深入的研究,從在線優(yōu)化、優(yōu)化算法改進(jìn)以及面向能量的優(yōu)化三個方面進(jìn)行突破和創(chuàng)新。 首先,針對間歇過程動態(tài)在線優(yōu)化控制問題,提出了基于擴(kuò)展卡爾曼濾波估計的間歇過程在線優(yōu)化控制方案,通過與離線優(yōu)化控制方案和典型的在線優(yōu)化控制方案對比,該方案在對反應(yīng)過程參數(shù)的估計和對反應(yīng)產(chǎn)量優(yōu)化方面展示出了良好的效果。 隨后,針對優(yōu)化算法的研究,提出了基于鄰域粒子擁擠度的粒子群優(yōu)化算法。該算法利用粒子視野這一概念,構(gòu)建粒子的動態(tài)鄰域,在搜索計算的過程中使鄰域由小到大變化,由此表現(xiàn)出的是算法前期充分尋找全局最優(yōu)值,后期又能加快收斂速度,同時建立了避免粒子過度擁擠的機(jī)制,防止其陷入局部最優(yōu)。通過與標(biāo)準(zhǔn)粒子群算法對比,展示出改進(jìn)算法的粒子多樣性和搜索精度都有所提高。 最后,對間歇過程的能量與產(chǎn)品產(chǎn)量指標(biāo)進(jìn)行了綜合優(yōu)化。提出了針對反應(yīng)預(yù)熱過程和恒溫反應(yīng)過程的分段優(yōu)化方案,在預(yù)熱過程對能量進(jìn)行優(yōu)化,在恒溫反應(yīng)過程對產(chǎn)品產(chǎn)量進(jìn)行優(yōu)化。達(dá)到了提高產(chǎn)品產(chǎn)量與節(jié)能降耗的雙重目的。將該方案運(yùn)用在典型的間歇生產(chǎn)過程中,驗證了其可行性。
[Abstract]:In this paper, the optimization of batch process is studied deeply, which includes three aspects: online optimization, optimization algorithm improvement and energy-oriented optimization. Firstly, aiming at the dynamic online optimal control of batch process, an online optimal control scheme for batch process based on extended Kalman filter estimation is proposed, which is compared with the off-line optimal control scheme and the typical on-line optimal control scheme. The scheme shows good effect in estimating the parameters of the reaction process and optimizing the reaction yield. Then, a particle swarm optimization algorithm based on neighborhood particle crowding is proposed for the study of optimization algorithm. By using the concept of particle field, the algorithm constructs the dynamic neighborhood of particles, and changes the neighborhood from small to large in the process of searching and calculating, which shows that the algorithm can search for the global optimal value in the early stage and speed up the convergence in the later stage. At the same time, a mechanism to avoid particle overcrowding is established to prevent particles from falling into local optimum. By comparing with the standard particle swarm optimization algorithm, it shows that the particle diversity and searching accuracy of the improved algorithm are improved. Finally, the energy and output indexes of batch process were optimized. In this paper, the optimization scheme for the reaction preheating process and the isothermal reaction process is put forward. The energy is optimized in the preheating process and the product output is optimized in the isothermal reaction process. The double purpose of increasing product output and saving energy consumption has been achieved. The scheme is applied to typical batch production process and its feasibility is verified.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TB114.2;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊維,李歧強(qiáng);粒子群優(yōu)化算法綜述[J];中國工程科學(xué);2004年05期
2 朱振興;衛(wèi)宏遠(yuǎn);楊華;;考慮能耗影響的多產(chǎn)品間歇化工過程優(yōu)化排序[J];化工進(jìn)展;2006年12期
3 楊國軍;李秀喜;陳峗;錢宇;;間歇過程實時優(yōu)化[J];化工學(xué)報;2011年10期
4 陳治綱,許超,邵惠鶴;間歇過程優(yōu)化與先進(jìn)控制綜述[J];化工自動化及儀表;2003年03期
5 孫月蘭;徐然;宋建成;;間歇過程不確定性短期調(diào)度綜述[J];化工自動化及儀表;2009年01期
6 周華;錢宇;李秀喜;許亮;;間歇反應(yīng)過程的動態(tài)優(yōu)化與集成控制[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2008年11期
7 陸克中;王汝傳;帥小應(yīng);;保持粒子活性的改進(jìn)粒子群優(yōu)化算法[J];計算機(jī)工程與應(yīng)用;2007年11期
8 韓立娜;熊盛武;;基于動態(tài)鄰域的粒子群算法的研究[J];計算機(jī)工程與應(yīng)用;2009年06期
9 王亞彪;陳清林;張冰劍;顏藝專;;間歇化工過程的能量綜合優(yōu)化策略[J];計算機(jī)與應(yīng)用化學(xué);2009年02期
10 王俊偉,汪定偉;一種帶有梯度加速的粒子群算法[J];控制與決策;2004年11期
相關(guān)博士學(xué)位論文 前1條
1 秦全德;粒子群算法研究及應(yīng)用[D];華南理工大學(xué);2011年
,本文編號:2092751
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2092751.html