P偏振ArF準(zhǔn)分子激光大角度減反射薄膜的研究與制備
發(fā)布時間:2018-06-29 09:19
本文選題:光刻技術(shù) + ArF ; 參考:《中國科學(xué)院研究生院(長春光學(xué)精密機械與物理研究所)》2014年博士論文
【摘要】:ArF準(zhǔn)分子激光由于其光斑的高功率、高均勻性和高穩(wěn)定性越來越多地應(yīng)用于半導(dǎo)體曝光、材料微加工及醫(yī)學(xué)手術(shù)等領(lǐng)域。ArF準(zhǔn)分子激光器不斷向著頻率更高,功率更大的方向發(fā)展。特別是在半導(dǎo)體產(chǎn)業(yè),193nm光刻系統(tǒng)是迄今為止人類所搭建的最為復(fù)雜的光學(xué)系統(tǒng)之一,隨著193nm光刻系統(tǒng)不斷向更高的節(jié)點邁進,對ArF準(zhǔn)分子激光器腔內(nèi)的薄膜元件的性能及其穩(wěn)定性的要求愈加苛刻。 在ArF準(zhǔn)分子激光器中,為了實現(xiàn)極窄的波長輸出,需要采用高精度線寬壓窄光學(xué)模塊,該模塊中包含了多個用于光斑擴束的色散棱鏡。為了獲得大倍率光斑擴束,P偏振態(tài)ArF準(zhǔn)分子激光入射至擴束棱鏡斜邊表面的入射角通常選定在68o-75o之間。由于大角度入射將引起擴束棱鏡斜邊表面的菲涅耳反射損耗的劇烈增加。為此,需要在擴束棱鏡斜邊表面鍍制P偏振減反射膜以降低反射損耗。 本文針對P偏振光斜入射薄膜系統(tǒng)時的偏振特性進行了理論分析,結(jié)合P偏振ArF準(zhǔn)分子激光大角度減反射薄膜制備的主要技術(shù)難點,采用needle優(yōu)化算法對其進行了系統(tǒng)的膜系優(yōu)化設(shè)計,并對優(yōu)化膜系進行了誤差評估。深入研究了P偏振大角度減反射薄膜制備工藝優(yōu)化過程,包括超光滑基底的表征與選取、沉積工藝參數(shù)對薄膜材料性能的影響進行了詳細的分析與表征。對制備的P偏振大角度減反射薄膜元件進行了相關(guān)測試及實驗,系統(tǒng)表征了ArF準(zhǔn)分子激光大角度減反射薄膜的殘余反射率、透過率、角度容差等光譜特征,吸收及散射損耗特性,激光輻照穩(wěn)定性和時間穩(wěn)定性等各項性能指標(biāo),完備評估了P偏振大角度減反射薄膜的綜合質(zhì)量。 在國內(nèi)首次實現(xiàn)了中心入射角度分別為71o和74o兩類P偏振ArF準(zhǔn)分子激光大角度減反射薄膜的制備,其性能指標(biāo)同比達到國際頂級光學(xué)薄膜元件公司(美國Acton,日本Sigma等)的報道水平。
[Abstract]:ArF excimer laser is more and more applied to semiconductor exposure because of its high power, high uniformity and high stability. The.ArF excimer laser in the fields of material micromachining and medical surgery has been developing in the direction of higher frequency and greater power. Especially in the semiconductor industry, the 193nm photolithography system is up to now. As one of the most complex optical systems built, the performance and stability of the thin film elements in the ArF excimer laser are increasingly demanding as the 193nm lithography system continues to move towards higher nodes.
In the ArF excimer laser, in order to achieve very narrow wavelength output, a high-precision line width narrowing optical module is required. In this module, multiple dispersive prisms are included in the beam beam expansion. In order to obtain large magnification, the incident angle of the P polarization ArF excimer laser to the beveled edge surface of the beam expanding prism is usually selected in the 68o-75o In the case of large angle incident, the Fresnel reflection loss of the beveled surface of the beam expanding prism will be increased violently. Therefore, the P polarization reduction film should be plated on the bevel edge surface of the beam expanding prism to reduce the reflection loss.
In this paper, the polarization characteristics of the P polarized light oblique incidence film system are analyzed, and the main technical difficulties of the P polarizing ArF excimer laser large angle reduction film are studied. The optimized design of the film system is carried out by the needle optimization algorithm, and the error of the optimized film system is evaluated. The polarization of the P is deeply studied. The optimization process of the fabrication process of the angle reduction film, including the characterization and selection of the super smooth substrate, the influence of the deposition process parameters on the properties of the thin film materials, was analyzed and characterized. The related tests and experiments were carried out on the prepared P polarizing large angle reduction film elements, and the large angle reduction of the ArF excimer laser was systematically characterized. The residual reflectance, transmittance, angular tolerance and other spectral characteristics, absorption and scattering loss characteristics, laser irradiation stability and time stability, etc., are used to evaluate the comprehensive quality of the P polarizing large angle antireflection film.
For the first time, 71o and 74o two kinds of P polarizing ArF excimer laser large angle reduction films were prepared for the first time in China, and their performance indexes reached the level of international top optical thin film companies (Acton, Japan Sigma, etc.).
【學(xué)位授予單位】:中國科學(xué)院研究生院(長春光學(xué)精密機械與物理研究所)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:O484;O436.3
【參考文獻】
相關(guān)期刊論文 前8條
1 姚達;劉欣;岳世忠;;半導(dǎo)體光刻技術(shù)及設(shè)備的發(fā)展趨勢[J];半導(dǎo)體技術(shù);2008年03期
2 張錦;馮伯儒;劉娟;;掩模投影成像干涉光刻研究[J];光電工程;2006年02期
3 尚淑珍;易葵;邵建達;范正修;;光刻機系統(tǒng)中193nm薄膜的研究進展[J];激光與光電子學(xué)進展;2006年01期
4 袁瓊雁;王向朝;施偉杰;李小平;;浸沒式光刻技術(shù)的研究進展[J];激光與光電子學(xué)進展;2006年08期
5 余吟山;游利兵;梁勖;方曉東;;準(zhǔn)分子激光技術(shù)發(fā)展(邀請論文)[J];中國激光;2010年09期
6 謝常青,葉甜春;193nm光學(xué)光刻技術(shù)[J];微電子技術(shù);1999年04期
7 蘇雪蓮;新世紀(jì)光刻技術(shù)及光刻設(shè)備的發(fā)展趨勢[J];微電子技術(shù);2001年02期
8 陳獻忠,姚漢民,陳旭南,李展,羅先剛;納米光刻技術(shù)的現(xiàn)狀和未來[J];物理;2002年11期
,本文編號:2081640
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2081640.html
最近更新
教材專著