天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 管理論文 > 工程管理論文 >

粘彈性阻尼材料及夾層板阻尼結(jié)構(gòu)動態(tài)力學(xué)性能研究

發(fā)布時間:2018-06-22 11:38

  本文選題:粘彈性阻尼材料 + 約束阻尼夾層板結(jié)構(gòu) ; 參考:《青島理工大學(xué)》2016年碩士論文


【摘要】:粘彈性阻尼材料(VEM)和約束阻尼夾層板(CLD)結(jié)構(gòu)廣泛應(yīng)用在船舶、航空航天、機械制造等領(lǐng)域的振動控制。本文主要研究了Qtech 501粘彈性阻尼材料和Qtech 413粘彈性阻尼材料兩種阻尼材料(以下簡稱Qtech 501和Qtech 413)的基本性能,借助動態(tài)粘彈譜儀測試(DMA)研究了上述材料的動態(tài)阻尼性能,并對實驗數(shù)據(jù)進行擬合。通過單點錘擊實驗,著重研究了彈性支撐和固定端約束兩種邊界條件下的夾層板阻尼結(jié)構(gòu)復(fù)合損耗因子,同時分析了阻尼層厚度、約束層厚度、約束層材料對復(fù)合損耗因子和阻尼效率的影響。首先研究了兩種粘彈性阻尼材料的基本性能,包括固化時間、固含量、密度、硬度、拉伸強度和斷裂伸長率。Qtech 501和Qtech 413的固含量分別為97.58%和94.76%,均屬于快速固化高固含量環(huán)保型材料;Qtech 501和Qtech 413的密度分別為1.140g/cm3和0.997g/cm3,作為阻尼材料對結(jié)構(gòu)質(zhì)量影響小;分析兩種材料的硬度、拉伸強度和斷裂伸長率,結(jié)果表明Qtech 501的力學(xué)行為更多地表現(xiàn)粘性,而Qtech 413更多的表現(xiàn)彈性。以Qtech 413為例,利用DMA研究了粘彈性阻尼材料的動態(tài)力學(xué)性能,分析了溫度和頻率對材料阻尼性能的影響。頻率一定時,隨溫度升高儲能模量降低,損耗因子先增后減,Tg時取得峰值;溫度一定時,頻率越高,儲能模量越高,Tg越高,損耗因子峰值隨之變大。利用溫頻等效原理,以折算頻率為自變量,以儲能模量和損耗因子因變量,對動態(tài)力學(xué)性能進行擬合。儲能模量和損耗因子擬合的決定系數(shù)分別為0.999和0.996,殘差平方和分別為1.767和3.469×10-4,說明擬合的公式具有很高的精度。對于彈性支撐夾層板阻尼結(jié)構(gòu),振動持時集中在0.14~0.18s;0.3mm阻尼層結(jié)構(gòu)復(fù)合損耗因子最小而0.7mm阻尼層結(jié)構(gòu)復(fù)合損耗因子最大;約束層為1mm的鋼板結(jié)構(gòu)時0.5mm阻尼層效率最高,其他結(jié)構(gòu)阻尼層效率變化的整體趨勢是0.3mm最大,0.5mm阻尼效率次之,0.7mm阻尼層的阻尼效率最差,即呈現(xiàn)阻尼層越薄,阻尼效率越高的規(guī)律;鋁質(zhì)約束層材料比鋼質(zhì)約束層材料的阻尼效率要高很多,前者約為后者的4~8倍;約束層阻尼效率隨著厚度增加呈現(xiàn)下降的趨勢,約束層的阻尼效率最高的為1mm鋁板,三個厚度阻尼層的效率分別5.47%,7.02%,7.48%,最差的是3mm鋼板;對于特定約束層材料,隨著約束層厚度、阻尼層厚度的增加,結(jié)構(gòu)振動級值整體呈現(xiàn)減小的趨勢。固端約束夾層板阻尼結(jié)構(gòu)振動持時同樣集中在0.14~0.18s;對于以鋼板和鋁板為約束層材料時,對應(yīng)的最優(yōu)阻尼層厚度分別是0.7mm和0.3mm,約束層材料為聚丙烯和有機玻璃時,阻尼層最優(yōu)厚度為0.5mm;不同結(jié)構(gòu)阻尼層的阻尼效率變化規(guī)律一致,阻尼層越薄,效率越高,平均阻尼層厚度效率最高的結(jié)構(gòu)是0.3mm阻尼層、2mm鋁板約束層結(jié)構(gòu),最高值為58.4%;對于特定的約束層材料,當(dāng)阻尼層厚度相同時,約束層越薄,阻尼效率越高;聚丙烯和有機玻璃由于材料損耗因子的影響,結(jié)構(gòu)整體的復(fù)合損耗因子和阻尼效率比金屬約束層要高,鋼板,鋁板,有機玻璃和聚丙烯約束層最高效率分別為1.33%,6.49%,17.49%,18.99%;當(dāng)約束層材料一定時,隨著約束層厚度的增加,結(jié)構(gòu)振動總級值不斷減小,而受邊界條件的影響,隨著阻尼層厚度的增加,結(jié)構(gòu)加速度響應(yīng)規(guī)律不明顯。研究結(jié)果表明,在約束阻尼結(jié)構(gòu)設(shè)計時,約束層的模量和剛度應(yīng)與基層匹配,同時約束層也應(yīng)具有較高損耗因子。一方面通過增大中間阻尼層的剪切變形,而增大結(jié)構(gòu)耗能能力,另一方面增大約束層損耗因子也有助于增加結(jié)構(gòu)的損耗因子,從而更好地進行振動控制。
[Abstract]:Viscoelastic damping material (VEM) and constrained damping sandwich (CLD) structure are widely used in the vibration control of ships, aerospace and mechanical manufacturing. This paper mainly studies the basic properties of two kinds of damping materials (Qtech 501 viscoelastic damping material and Qtech 413 viscoelastic damping material (hereinafter referred to as Qtech 501 and Qtech 413), with the aid of the dynamics. The dynamic damping properties of the above materials are studied by viscoelastic spectrometer (DMA), and the experimental data are fitted. Through a single point hammer test, the composite loss factors of the sandwich plate damping structure under two boundary conditions of elastic support and fixed end are studied. At the same time, the thickness of the damping layer, the thickness of the confinement layer and the material of the constrained layer are analyzed. The basic properties of two viscoelastic damping materials are studied, including curing time, solid content, density, hardness, tensile strength and elongation at break.Qtech 501 and Qtech 413, respectively, 97.58% and 94.76%, respectively, which are fast curing and high solid content environmental protection materials; Qtech 501 and Qtech 41. The density of 3 is 1.140g/cm3 and 0.997g/cm3 respectively. As a damping material, the influence of the structure quality is small. The hardness, tensile strength and elongation at break of the two materials are analyzed. The results show that the mechanical behavior of Qtech 501 is more viscous, while Qtech 413 shows more elasticity. The viscoelastic damping material is studied by DMA in the case of Qtech 413. Dynamic mechanical properties, and analyze the influence of temperature and frequency on material damping performance. When the frequency is certain, the storage modulus decreases with the temperature, the loss factor increases first and then decreases, and the peak value is obtained in Tg. When the temperature is certain, the higher the frequency, the higher the storage modulus, the higher the Tg, the peak of the loss factor. The conversion frequency is calculated by the principle of the equivalent temperature and frequency. The dynamic mechanical properties are fitted with the variable of energy storage modulus and loss factor. The determination coefficients of the fitting of energy storage modulus and loss factor are 0.999 and 0.996 respectively, and the sum of residual squares is 1.767 and 3.469 * 10-4 respectively, indicating that the fitting formula is of high precision. In 0.14~0.18s, the composite loss factor of the 0.3mm damping layer is the smallest and the composite loss factor of the 0.7mm damping layer is the largest. The 0.5mm damping layer is the highest when the steel plate structure with the constraint layer is 1mm, the overall trend of the other structure damping layer efficiency is the largest 0.3mm, the 0.5mm damping efficiency is the second, the damping efficiency of the 0.7mm damping layer is the worst, that is to say, the damping layer of the 0.7mm is the worst. The thinner the damping layer is, the higher the damping efficiency is, the damping efficiency of the aluminum confinement material is much higher than that of the steel constraint layer, the former is about 4~8 times of the latter, the damping efficiency of the restraint layer decreases with the increase of the thickness, the damping efficiency of the constraint layer is 1mm aluminum, the efficiency of the three thickness damping layers is 5.47%, 7. respectively. 02%, 7.48%, the worst is the 3mm steel plate; for the specific constrained layer material, with the increase of the thickness of the constraint layer and the thickness of the damping layer, the vibration level of the structure decreases as a whole. The vibration holding of the sandwich plate damping structure is also concentrated in the 0.14~0.18s; for the steel plate and the aluminum plate as the constrained layer material, the corresponding optimum damping layer thickness The optimum thickness of the damping layer is 0.5mm when the confinement material is polypropylene and organic glass. The damping efficiency of different structural damping layers is the same, the damping layer is thinner, the efficiency is higher, the structure with the highest thickness efficiency of the average damping layer is the 0.3mm damping layer, the 2mm aluminum plate constraint layer structure is 58.4%; for special, the structure of the 2mm aluminum plate is 58.4%. When the thickness of the damping layer is the same, the damping efficiency is higher when the thickness of the damping layer is the same, the higher the damping efficiency is, the composite loss factor and the damping efficiency of the polypropylene and organic glass are higher than that of the metal confinement layer. The maximum efficiency of the steel plate, aluminum plate, organic glass and polypropylene is 1.33%, 6.49%, 17. respectively. 49%, 18.99%, when the constraint layer material is certain, with the increase of the thickness of the constraint layer, the total value of the structural vibration decreases continuously, and the response law of the structure acceleration is not obvious with the influence of the boundary conditions. The time constraint layer should also have a high loss factor. On the one hand, the energy dissipation capacity of the structure is increased by increasing the shear deformation of the middle damping layer. On the other hand, increasing the loss factor of the constraint layer also helps to increase the loss factor of the structure, so that the vibration control is better.
【學(xué)位授予單位】:青島理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TB535.1

【參考文獻】

相關(guān)期刊論文 前10條

1 呂平;蓋盼盼;伯仲維;黃艦;;阻尼層厚度對結(jié)構(gòu)阻尼性能的影響[J];噪聲與振動控制;2013年02期

2 左孔成;蔡振兵;沈明學(xué);張曉宇;彭金方;朱e,

本文編號:2052707


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2052707.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fb081***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com