天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 管理論文 > 工程管理論文 >

GaN基LED不同功能層的MOCVD生長及其性能研究

發(fā)布時(shí)間:2018-06-21 20:45

  本文選題:發(fā)光二極管 + GaN。 參考:《太原理工大學(xué)》2016年博士論文


【摘要】:LED作為第三代光源,具有節(jié)能、環(huán)保、壽命長、穩(wěn)定性高、體積小等優(yōu)點(diǎn),可以廣泛應(yīng)用于各種指示、顯示、裝飾、背光源和固態(tài)照明等領(lǐng)域。自中村修二成功制備了寬禁帶GaN基半導(dǎo)體材料之后,具有商業(yè)應(yīng)用價(jià)值的藍(lán)光LED獲得實(shí)現(xiàn),LED在光效提升和成本降低方面取得了飛速的發(fā)展。但LED仍有一些問題需要進(jìn)一步解決和完善,例如,外延生長參數(shù)對GaN晶體質(zhì)量的影響機(jī)制還不明確;高空穴濃度低電阻率p型GaN的制備困難;InGaN與GaN的物理化學(xué)性能差異使得高質(zhì)量量子阱生長困難等。本論文從以上提出的問題出發(fā),對GaN基LED外延結(jié)構(gòu)各功能層進(jìn)行生長,探究了工藝參數(shù)和結(jié)構(gòu)參數(shù)對不同功能層結(jié)構(gòu)性質(zhì)以及光電性能的影響,并對其影響機(jī)制做了深入的分析。具體內(nèi)容如下:1、研究了形核層厚度(分別為15、25和45 nm)對平面藍(lán)寶石襯底上生長的GaN薄膜晶體質(zhì)量的影響。高分辨X射線衍射(HRXRD)結(jié)果表明:當(dāng)形核層厚度為25 nm時(shí),GaN外延薄膜的(002)和(102)面的HRXRD譜的半高寬(FWHM)最小,分別為267和284 arcsec。原子力顯微鏡(AFM)結(jié)果表明:形核層退火后,樣品表面呈島狀結(jié)構(gòu)。形核層厚度的增加有利于獲得大尺寸的島,但是島的均勻性較差。尺寸大、均勻性好、密度低的形核島對GaN外延薄膜的晶體質(zhì)量是最有利的,這可采用位錯(cuò)的產(chǎn)生和演變機(jī)制來解釋影響機(jī)理。調(diào)控形核層厚度是控制島的尺寸和密度的有效手段之一,因此,形核層厚度能夠顯著影響gan薄膜的晶體質(zhì)量。2、研究了形核層厚度對圖形藍(lán)寶石襯底上生長的gan薄膜晶體質(zhì)量的影響。掃描電子顯微鏡(sem)和hrxrd結(jié)果表明:三維生長過程中形核點(diǎn)的位置對gan薄膜的晶體質(zhì)量有明顯的影響,當(dāng)三維生長形核點(diǎn)的位置處于圖形的側(cè)壁時(shí)不利于gan薄膜晶體質(zhì)量的提高,這是由于側(cè)壁上長大的形核島晶體取向存在差異;三維生長形核點(diǎn)的位置處于圖形的間隙時(shí)有利于獲得高質(zhì)量的gan晶體,這時(shí)形核島的晶體取向一致,生長的gan表面較平整,晶體質(zhì)量較高。形核層的厚度能夠顯著影響形核點(diǎn)的位置,因此其對gan的晶體質(zhì)量有重要的影響。3、解釋了輕si摻雜gan中較高的載流子遷移率以及較強(qiáng)的黃帶發(fā)光峰強(qiáng)度的物理機(jī)制。結(jié)果表明:載流子遷移率隨著載流子濃度的升高呈現(xiàn)出先增加后降低的變化趨勢,這種變化源自于電離雜質(zhì)對位錯(cuò)散射的屏蔽和電離雜質(zhì)散射的增強(qiáng)。在低摻雜濃度下(載流子濃度為2.37×1017cm-3),電離雜質(zhì)對位錯(cuò)散射的屏蔽作用處于主導(dǎo)地位,從而導(dǎo)致遷移率的驟升。在高的摻雜濃度下(載流子濃度為9.73×1018cm-3),電離雜質(zhì)散射的增強(qiáng)導(dǎo)致載流子遷移率的降低。高的遷移率導(dǎo)致光生非平衡載流子的擴(kuò)散長度增加,從而引起更多的缺陷參與到復(fù)合中去,導(dǎo)致輕si摻雜gan的黃帶發(fā)光峰強(qiáng)度增強(qiáng)。4、研究了mg/ga比對p型gan光電性能的影響。結(jié)果表明:當(dāng)mg/ga比為2%時(shí),p型gan可以獲得最高的空穴濃度4.2×1017cm-3。當(dāng)mg/ga比超過了2%時(shí),會形成位于深施主能級的mgga-vn,起自補(bǔ)償作用,此時(shí),440nm的藍(lán)光發(fā)光峰會出現(xiàn),并且隨著mg/ga比的不斷增大,440nm的藍(lán)光發(fā)光峰逐漸增強(qiáng)。同時(shí),較大的Mg/Ga比會導(dǎo)致p型GaN表面出現(xiàn)顆粒狀的物質(zhì),并且隨著比值的增加,顆粒的尺寸增大。結(jié)果表明在重?fù)诫s狀態(tài)下,Mg雜質(zhì)并不是全部以受主狀態(tài)存在,而是部分以深施主狀態(tài)存在。5、研究了阱層厚度對藍(lán)光InGaN/GaN量子阱性能的影響。結(jié)果表明:在相同的激發(fā)功率下,隨著阱厚的增加,光致發(fā)光譜(PL)發(fā)光波長出現(xiàn)紅移,并且激發(fā)功率越大,紅移程度越弱。隨著阱厚的增加,對于較薄的量子阱(1.8和2.7 nm),PL發(fā)光波長的紅移是由帶隙填充效應(yīng)引起的;對于較厚的量子阱(3.6和4.5 nm),PL發(fā)光波長的紅移是由極化場屏蔽效應(yīng)引起的。阱最薄的樣品(1.8 nm)由于其極化效應(yīng)最弱,EL譜具有最高的發(fā)光強(qiáng)度,但其發(fā)光波長較短僅有430 nm,比標(biāo)準(zhǔn)的藍(lán)光波長(450 nm)藍(lán)移了20 nm。雖然,可以通過降低生長溫度或增加In源流量的方法使其發(fā)光波長變?yōu)?50 nm,但其晶體質(zhì)量會變差,導(dǎo)致EL發(fā)光強(qiáng)度比2.7 nm阱厚的樣品低,因此,在標(biāo)準(zhǔn)的藍(lán)光波段2.7 nm為較理想的阱厚。6、研究了量子阱中勢阱層的生長速率對綠光InGaN/GaN量子阱性能的影響。HRXRD結(jié)果表明:隨著勢阱層生長速率的提高,量子阱的界面質(zhì)量不斷惡化。AFM結(jié)果表明:隨著阱層生長速率的提高,量子阱表面開始出現(xiàn)裂紋,并且裂紋的尺寸逐漸增大。PL結(jié)果表明:在低的生長速率下,PL發(fā)光強(qiáng)度會明顯提高,FWHM變窄,發(fā)光波長藍(lán)移。以上結(jié)果表明降低量子阱的生長速率使勢阱中In組分分布更均勻,有利于獲得陡峭的量子阱界面和較平整的量子阱表面。
[Abstract]:LED, as the third generation light source, has the advantages of energy saving, environmental protection, long life, high stability and small volume. It can be widely used in various directions, display, decoration, backlight and solid state lighting. Since Nakamura Shuji has successfully prepared the wide band gap GaN based semiconductor materials, the blue light LED with commercial application value is realized, and LED is in light effect. The improvement and cost reduction have made rapid progress. However, there are still some problems to be solved and improved in LED. For example, the influence mechanism of the epitaxial growth parameters on the quality of GaN crystal is not clear; the preparation of P GaN with low resistivity at high altitude is difficult, and the difference of physical and chemical properties between InGaN and GaN makes the high quality quantum well growth stranded. In this paper, from the above questions, the function layer of GaN based LED epitaxial structure is grown, and the influence of process parameters and structural parameters on the structure and photoelectric properties of different functional layers is explored, and the influence mechanism is deeply analyzed. The specific contents are as follows: 1, the thickness of the nucleation layer (15,25 and 45, respectively) Nm) effect on the crystal quality of the GaN film grown on a flat sapphire substrate. The results of high resolution X ray diffraction (HRXRD) show that when the thickness of the nucleation layer is 25 nm, the HRXRD spectrum of the GaN epitaxial film is the smallest half width (FWHM) of the (002) and (102) surface, and the results of the 267 and 284 arcsec. atomic force microscopy (AFM) respectively indicate that after the nucleation layer is annealed, the sample is annealed. The increase of the thickness of the nucleation layer is beneficial to the large size of the island, but the uniformity of the island is poor. The size, uniformity, and the low density of the nucleation island are the most favorable to the crystal quality of the GaN epitaxial film, which can be used to explain the mechanism of the influence of the dislocation formation and evolution. One of the effective means of size and density, therefore, the thickness of the nucleation layer can significantly influence the crystal mass of the GaN film.2. The effect of the thickness of the nucleation layer on the crystal quality of the GaN film grown on a graphic sapphire substrate is studied. The scanning electron microscope (SEM) and hrxrd results show that the position of the nucleation point in the three-dimensional growth process is on the crystal of the GaN film. The body mass has an obvious effect. When the position of the three-dimensional growth nucleation point is in the side wall of the figure, it is not conducive to the improvement of the crystal quality of the GaN film, which is due to the difference in the crystal orientation of the nucleated Island grown on the side wall; the position of the three dimensional growth nucleation point is favorable for obtaining high quality GaN crystals when the space of the shape of the nucleation point is in the shape of the shape. The crystal orientation is the same, the growth of the GaN surface is more smooth and the crystal quality is higher. The thickness of the nucleation layer can affect the position of the nucleation point significantly. Therefore, it has an important influence on the crystal quality of Gan,.3, explaining the high carrier mobility in the light Si doped Gan and the strong physical mechanism of the intensity of the yellow band luminescence peak. The results show that the carrier is the carrier. The migration rate increases first and then decreases with the increase of carrier concentration, which is derived from the shielding of the ionization impurity to the dislocation scattering and the enhancement of the ionizing impurity scattering. Under the low doping concentration (the carrier concentration is 2.37 * 1017cm-3), the shielding effect of the ionized impurity to the dislocation scattering is leading. At a high doping concentration (the carrier concentration is 9.73 x 1018cm-3), the enhancement of the ionized impurity scattering leads to the decrease of the carrier mobility. High mobility leads to the increase in the diffusion length of the unbalanced carrier, which causes more defects to participate in the complex, leading to the yellow band luminescence peak intensity of the light Si doped Gan. The effect of mg/ga on the photoelectric performance of P Gan is studied. The result shows that when the mg/ga ratio is 2%, the P type Gan can obtain the highest hole concentration of 4.2 x 1017cm-3. when the mg/ga ratio exceeds 2%, and it will form a mgga-vn that is located in the deep donor level. At this time, the 440nm blue light summit appears, and as the mg/ga ratio is not. At the same time, the blue light peak of 440nm increases gradually. At the same time, the larger Mg/Ga ratio leads to the appearance of granular material on the surface of the P type GaN, and the size of the particles increases with the increase of the ratio. The result shows that the Mg impurity is not all in the main state under the heavy doping state, but a part is.5 in the deep donor state, and the well is studied in the well. The effect of layer thickness on the performance of blue light InGaN/GaN quantum well shows that with the same excitation power, with the increase of the well thickness, the luminescent wavelength of photoluminescence spectrum (PL) appears red shift, and the greater the excitation power, the weaker the degree of red shift. With the increase of the well thickness, the red shift of the PL luminescence wavelength is from the band gap for the thinner quantum well (1.8 and 2.7 nm). For the thicker quantum wells (3.6 and 4.5 nm), the red shift of the PL luminescence wavelength is caused by the shielding effect of the polarization field. The thinnest well sample (1.8 nm) has the highest luminescence intensity because of its weakest polarization effect, but its luminescence wavelength is only 430 nm, which is 20 nm. than the standard blue light wavelength (450 nm). The luminescence wavelength can be reduced to 450 nm by reducing the growth temperature or increasing the flow rate of the In source, but the crystal quality will become worse, which leads to the lower EL luminescence intensity than the 2.7 nm well thickness. Therefore, the standard blue band 2.7 nm is an ideal well thickness.6. The growth rate of the potential well layer in the quantum well is studied on the green InGaN/GaN quantum well. The effect of.HRXRD shows that with the increase of the growth rate of the potential well layer, the interfacial mass of the quantum well is deteriorating.AFM results. The results show that the crack in the quantum well surface begins to appear with the increase of the growth rate of the well layer, and the size of the crack increases gradually.PL results show that the luminescence intensity of PL will be obviously increased at low growth rate, FWH M is narrower and the luminescence wavelength is blue shift. The above results show that the reduction of the growth rate of the quantum well makes the distribution of In components more uniform in the potential well, which is beneficial to obtaining a steep quantum well interface and a more smooth quantum well surface.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TB383.2

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 熊家炯,朱嘉麟;半導(dǎo)體超晶格、量子阱材料的進(jìn)展[J];材料科學(xué)進(jìn)展;1990年02期

2 郝劍紅;閆發(fā)旺;李有成;;雙拋量子阱中的類似“δ”勢結(jié)構(gòu)[J];河北科技大學(xué)學(xué)報(bào);1998年04期

3 許懷哲;;用有限單元法計(jì)算量子阱結(jié)構(gòu)本征值[J];西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版);1991年04期

4 潘繼環(huán);蘇安;蒙成舉;高英俊;;壘層周期不對稱度對光量子阱透射譜的影響[J];激光與光電子學(xué)進(jìn)展;2014年01期

5 劉艷萍,程秀鳳,馮名誠;準(zhǔn)一維有機(jī)量子阱特征[J];山東建筑工程學(xué)院學(xué)報(bào);2002年01期

6 劉金鋒;劉忠良;任鵬;徐彭壽;陳秀芳;徐現(xiàn)剛;;6H-SiC/3C-SiC/6H-SiC量子阱結(jié)構(gòu)制備及其發(fā)光特性[J];物理化學(xué)學(xué)報(bào);2008年04期

7 劉文莉;何修軍;唐婷婷;;一維單勢壘光量子阱中多通道特性分析[J];壓電與聲光;2014年04期

8 廖凌宏;周志文;李成;陳松巖;賴虹凱;余金中;王啟明;;Si_(0.75)Ge_(0.25)虛襯底上應(yīng)變補(bǔ)償Si/Si_(0.62)Ge_(0.38)量子阱發(fā)光[J];材料科學(xué)與工程學(xué)報(bào);2009年01期

9 郭海峰;哈斯花;朱俊;;應(yīng)變GaN/Al_xGa_(1-x)N量子阱中電子的躍遷能量[J];功能材料;2011年S2期

10 段樹坤;InP系量子阱結(jié)構(gòu)的MOVPE生長[J];稀有金屬;1994年04期

相關(guān)會議論文 前10條

1 萬仁剛;張同意;;非對稱量子阱中基于隧穿誘導(dǎo)增強(qiáng)交叉相位調(diào)制的錐輻射[A];第十五屆全國量子光學(xué)學(xué)術(shù)報(bào)告會報(bào)告摘要集[C];2012年

2 蘇雪梅;;GaAs/AlGaAs非對稱耦合雙量子阱子帶躍遷間Fano干涉效應(yīng)及其色散性質(zhì)[A];“加入WTO和科學(xué)技術(shù)與吉林經(jīng)濟(jì)發(fā)展——機(jī)遇·挑戰(zhàn)·責(zé)任”吉林省第二屆科學(xué)技術(shù)學(xué)術(shù)年會論文集(上)[C];2002年

3 寧永強(qiáng);孫艷芳;李特;秦莉;晏長嶺;王超;劉云;王立軍;;周期增益量子阱大功率垂直腔面發(fā)射激光器[A];全國第十二次光纖通信暨第十三屆集成光學(xué)學(xué)術(shù)會議論文集[C];2005年

4 廖輝;陳偉華;李丁;李睿;楊志堅(jiān);張國義;胡曉東;;三元系和四元系GaN基量子阱結(jié)構(gòu)的顯微結(jié)構(gòu)研究[A];第十六屆全國半導(dǎo)體物理學(xué)術(shù)會議論文摘要集[C];2007年

5 李超榮;呂威;張澤;;InGaN/GaN量子阱結(jié)構(gòu)的應(yīng)變弛豫臨界厚度、行為以及對物理性能的影響[A];第十三屆全國電子顯微學(xué)會議論文集[C];2004年

6 卜濤;李福利;;基于零平均折射率帶隙的光量子阱結(jié)構(gòu)的透射特性[A];第十三屆全國量子光學(xué)學(xué)術(shù)報(bào)告會論文摘要集[C];2008年

7 朱巖;倪海橋;王海莉;賀繼方;李密峰;尚向軍;牛智川;;GaAs基異變量子阱[A];中國光學(xué)學(xué)會2010年光學(xué)大會論文集[C];2010年

8 李俊澤;陶岳彬;陳志忠;姜顯哲;付星星;王溯源;吳潔君;于彤軍;張國義;;低銦夾層對量子阱發(fā)光的影響研究[A];第十二屆全國MOCVD學(xué)術(shù)會議論文集[C];2012年

9 閆東鵬;陸軍;衛(wèi)敏;段雪;;基于插層組裝材料的多重量子阱結(jié)構(gòu)理論設(shè)計(jì)與分子模擬[A];中國化學(xué)會第27屆學(xué)術(shù)年會第14分會場摘要集[C];2010年

10 哈斯花;班士良;;應(yīng)變閃鋅礦(001)取向GaN/AlGaN量子阱中受屏蔽激子的壓力效應(yīng)[A];第十六屆全國半導(dǎo)體物理學(xué)術(shù)會議論文摘要集[C];2007年

相關(guān)博士學(xué)位論文 前10條

1 李倩;量子阱紅外探測器的等離激元微腔光耦合研究[D];中國科學(xué)院研究生院(上海技術(shù)物理研究所);2015年

2 李毅;Ⅲ族氮化物量子阱發(fā)光特性的研究[D];南京大學(xué);2013年

3 Muhammad Ashfaq Jamil;脈沖激光沉積制備ZnO基量子阱及其光學(xué)性質(zhì)研究[D];大連理工大學(xué);2016年

4 谷卓;三元混晶纖鋅礦量子阱中電子帶間躍遷及遷移率[D];內(nèi)蒙古大學(xué);2017年

5 楊浩軍;Ⅲ-N半導(dǎo)體光電探測器的載流子輸運(yùn)和材料生長研究[D];中國科學(xué)院大學(xué)(中國科學(xué)院物理研究所);2017年

6 尚林;GaN基LED不同功能層的MOCVD生長及其性能研究[D];太原理工大學(xué);2016年

7 謝耀平;金屬量子阱系統(tǒng)和金納米結(jié)構(gòu)催化效應(yīng)的第一性原理研究[D];復(fù)旦大學(xué);2009年

8 朱俊;應(yīng)變纖鋅礦量子阱中的電子態(tài)[D];內(nèi)蒙古大學(xué);2012年

9 屈媛;纖鋅礦氮化物量子阱中電子遷移率及應(yīng)變和壓力調(diào)制[D];內(nèi)蒙古大學(xué);2010年

10 徐枝新;耦合量子阱能級特性與結(jié)構(gòu)優(yōu)化的研究[D];浙江大學(xué);2006年

相關(guān)碩士學(xué)位論文 前10條

1 蔡鎮(zhèn)準(zhǔn);基于耦合量子阱的GaN基垂直結(jié)構(gòu)LED器件研究[D];華南理工大學(xué);2015年

2 李志強(qiáng);纖鋅礦ZnO/Mg_xZn_(1-x)O量子阱中阱寬和組分對極化子效應(yīng)的影響[D];內(nèi)蒙古師范大學(xué);2015年

3 賈慧民;InGaAsSb/AlGaAsSb量子阱結(jié)構(gòu)及光譜分析[D];長春理工大學(xué);2014年

4 馬雙慶;GaN基紫外LED多量子阱結(jié)構(gòu)優(yōu)化研究[D];西安電子科技大學(xué);2014年

5 丁娟;GaN基紫外LED的光致發(fā)光譜分析[D];西安電子科技大學(xué);2014年

6 史辰恬;InGaN量子阱中的載流子橫向遷移效應(yīng)[D];南京大學(xué);2016年

7 詹小紅;InGaAs量子阱半導(dǎo)體薄片激光器芯片處理及光譜特性[D];重慶師范大學(xué);2016年

8 王蕊;非對稱耦合雙量子阱GaAs/Al_xGa_(1-x)As中的激子態(tài)[D];內(nèi)蒙古大學(xué);2016年

9 白丹;氮化鎵量子阱波導(dǎo)及波導(dǎo)集成器件的研究[D];南京郵電大學(xué);2016年

10 陳蛟龍;GaN基長波紫外LED多量子阱結(jié)構(gòu)調(diào)整對光效的影響[D];西安電子科技大學(xué);2015年

,

本文編號:2049952

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2049952.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f454d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产麻豆视频一二三区| 激情亚洲一区国产精品久久| 黑色丝袜脚足国产一区二区| 男女激情视频在线免费观看| 国产亚州欧美一区二区| 欧美不雅视频午夜福利| 精品一区二区三区人妻视频| 国内尹人香蕉综合在线| 亚洲国产另类久久精品| 日本加勒比在线观看不卡| 青青操日老女人的穴穴| av中文字幕一区二区三区在线| 四季精品人妻av一区二区三区| 精品人妻av区波多野结依| 91欧美一区二区三区| 国产精品免费不卡视频| 亚洲精品福利入口在线| 不卡一区二区高清视频| 91人妻人澡人人爽人人精品| 国产一级性生活录像片| 国产精品久久三级精品| 91亚洲精品国产一区| 亚洲最新中文字幕在线视频| 国产亚州欧美一区二区| 久久热麻豆国产精品视频| 九九热这里只有免费精品| 色好吊视频这里只有精| 免费高清欧美一区二区视频| 九九热精彩视频在线播放| 黑丝袜美女老师的小逼逼| 99视频精品免费视频| 国产高清一区二区不卡| 91国自产精品中文字幕亚洲| 大香蕉伊人一区二区三区| 91亚洲国产成人久久精品麻豆| 国产又大又猛又粗又长又爽| 91人妻人人揉人人澡人| 91久久精品国产一区蜜臀| 色婷婷日本视频在线观看| 国产女高清在线看免费观看| 激情内射亚洲一区二区三区|