車(chē)用消聲器聲固耦合的研究與分析
本文選題:消聲器 + 消聲性能 ; 參考:《山東大學(xué)》2014年碩士論文
【摘要】:隨著我國(guó)汽車(chē)保有量的逐年上漲,噪聲污染問(wèn)題變得越來(lái)越嚴(yán)重,人們對(duì)噪聲問(wèn)題的關(guān)注也越來(lái)越高。內(nèi)燃機(jī)噪聲是道路噪聲污染的主要來(lái)源,對(duì)內(nèi)燃機(jī)的減振降噪一直是學(xué)術(shù)研究的熱點(diǎn),F(xiàn)在,對(duì)內(nèi)燃機(jī)排氣噪聲的控制主要有兩方面的措施,一是從噪聲源的傳播機(jī)理入手,對(duì)噪聲源本身進(jìn)行控制。二是在排氣口處安裝排氣消聲器,此方法簡(jiǎn)單有效,所以成為國(guó)內(nèi)外應(yīng)用最廣泛的方法。在消聲器設(shè)計(jì)階段,根據(jù)設(shè)計(jì)數(shù)據(jù)對(duì)消聲器進(jìn)行消聲性能的預(yù)測(cè),這對(duì)設(shè)計(jì)階段的優(yōu)化指導(dǎo)具有重要的意義。研究表明,實(shí)際工況下消聲器的檢測(cè)性能與設(shè)計(jì)階段仿真模擬和理論計(jì)算數(shù)據(jù)之間存在有一定的偏差。相關(guān)學(xué)者研究認(rèn)為,這些偏差可能與消聲器聲固耦合、實(shí)際檢測(cè)環(huán)境、數(shù)據(jù)測(cè)量誤差以及數(shù)據(jù)處理誤差有關(guān),其中聲固耦合的影響占主要部分。 實(shí)際中對(duì)消聲器消聲性能的計(jì)算一般都是從聲學(xué)基本方程出發(fā),將消聲器的壁面做剛性處理,并且不考慮介質(zhì)的流速。但是這樣計(jì)算的結(jié)果一般都與實(shí)際情況有明顯差別,如工況下測(cè)得的消聲器的消聲性能與理論模擬之間存在較大差異。當(dāng)需要精確計(jì)算消聲性能而考慮聲固耦合作用的影響時(shí),壁面振動(dòng)將作為聲學(xué)方程的一個(gè)邊界條件,這增加了微分方程求解的難度。對(duì)于聲固耦合問(wèn)題的求解,一般采用有限元方法,將壁面振動(dòng)作為邊界激勵(lì)條件,將邊界振動(dòng)轉(zhuǎn)化為聲壓波動(dòng),用邊界振動(dòng)矩陣修正聲學(xué)剛度矩陣,將節(jié)點(diǎn)振動(dòng)與節(jié)點(diǎn)聲壓聯(lián)系起來(lái)。求解聲固耦合的影響。 文章開(kāi)始從理論基本公式出發(fā),詳細(xì)推導(dǎo)了考慮聲固耦合作用下的消聲器聲學(xué)性能的計(jì)算,并利用商用聲學(xué)計(jì)算軟件進(jìn)行對(duì)比計(jì)算。研究了結(jié)構(gòu)、壁厚、材料以及約束等不同因子對(duì)聲固耦合的影響。并且從模態(tài)的概念出發(fā),分析了結(jié)構(gòu)振動(dòng)及內(nèi)部聲壓變化的關(guān)系;指出結(jié)構(gòu)振動(dòng)和內(nèi)部聲壓的變化共同作用改變消聲器的消聲特性。并得出在某些頻段上是不可忽略聲固耦合影響的,在消聲器設(shè)計(jì)階段應(yīng)進(jìn)行聲固耦合的分析計(jì)算,并給出了改善聲固耦合的建議。
[Abstract]:With the increasing of automobile ownership in China, the problem of noise pollution becomes more and more serious, and people pay more and more attention to the problem of noise. The noise of internal combustion engine is the main source of road noise pollution. At present, there are two main measures to control the exhaust noise of internal combustion engine. One is to control the noise source itself from the mechanism of the noise source. The second is to install exhaust muffler at the exhaust port. This method is simple and effective, so it has become the most widely used method at home and abroad. In the stage of muffler design, the muffler performance is predicted according to the design data, which is of great significance to the optimization guidance of the design stage. The results show that there is a certain deviation between the performance of muffler and the data of simulation and theoretical calculation in the design stage. It is considered that these deviations may be related to acousto-solid coupling of mufflers, actual detection environment, data measurement errors and data processing errors, among which the influence of acousto-solid coupling is the main part. In practice, the muffler's noise performance is usually calculated from the basic acoustic equation, the silencer's wall is treated rigidly, and the velocity of the medium is not taken into account. However, the calculated results are generally different from the actual situation, such as the muffler performance measured under working conditions and theoretical simulation. When the influence of acousto-solid coupling is taken into account in the accurate calculation of acoustic performance, wall vibration will be regarded as a boundary condition for acoustic equations, which increases the difficulty of solving differential equations. For the solution of acousto-solid coupling problem, the finite element method is generally used, the wall vibration is taken as the boundary excitation condition, the boundary vibration is transformed into the sound pressure fluctuation, and the acoustic stiffness matrix is modified by the boundary vibration matrix. The nodal vibration is associated with the nodal sound pressure. The influence of acousto-solid coupling is solved. Starting from the basic theoretical formula, this paper deduces the calculation of acoustic performance of muffler considering acoustic-solid coupling in detail, and compares the calculation with commercial acoustics calculation software. The effects of different factors, such as structure, wall thickness, material and confinement, on acousto-solid coupling are studied. Based on the concept of mode, the relationship between structural vibration and internal sound pressure change is analyzed, and it is pointed out that the joint action of structural vibration and internal sound pressure changes the muffler's noise characteristics. It is concluded that the influence of acousto-solid coupling should not be ignored in some frequency bands, and the analysis and calculation of acousto-solid coupling should be carried out in the design stage of muffler, and some suggestions for improving the acousto-solid coupling are given.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:U467.493;TB535
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 劉忠族,孫玉東,吳有生;管道流固耦合振動(dòng)及聲傳播的研究現(xiàn)狀及展望[J];船舶力學(xué);2001年02期
2 羅虹;王偉戈;鄧兆祥;褚志剛;陶麗芳;;汽車(chē)排氣消聲器內(nèi)部流場(chǎng)和聲場(chǎng)數(shù)值分析[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年08期
3 王雪仁;季振林;;快速多極子聲學(xué)邊界元法及其研究應(yīng)用[J];哈爾濱工程大學(xué)學(xué)報(bào);2007年07期
4 趙榮寶,陳秉聰,程悅蓀;車(chē)內(nèi)噪聲與結(jié)構(gòu)振動(dòng)偶合研究的現(xiàn)狀與進(jìn)展[J];吉林工業(yè)大學(xué)學(xué)報(bào);1987年02期
5 張乃龍;楊文通;費(fèi)仁元;;基于ANSYS的抗性消聲器性能仿真分析[J];計(jì)算機(jī)仿真;2006年08期
6 吳國(guó)榮,鐘偉芳,吳永東,梁以德;應(yīng)用分形有限元方法于外域聲場(chǎng)計(jì)算[J];力學(xué)與實(shí)踐;2004年05期
7 吳興世;;航空流體—結(jié)構(gòu)耦合系統(tǒng)動(dòng)態(tài)分析的動(dòng)態(tài)子結(jié)構(gòu)方法[J];民用飛機(jī)設(shè)計(jì)與研究;1996年02期
8 黎蘇,葛蘊(yùn)珊,黎志勤,張旭;抗性消聲器的三維聲學(xué)邊界元模型及其應(yīng)用[J];內(nèi)燃機(jī)學(xué)報(bào);1992年02期
9 蔡超,宮鎮(zhèn),諸圣國(guó);存在氣流時(shí)軸對(duì)稱(chēng)抗性消聲器傳遞損失的有限元法求解[J];汽車(chē)工程;1994年05期
10 馬天飛,林逸,閔海濤,秦民,張建偉;輕型客車(chē)NVH特性的剛彈耦合、聲固耦合仿真研究[J];汽車(chē)工程;2005年01期
中國(guó)博士學(xué)位論文全文數(shù)據(jù)庫(kù) 前2條
1 方建華;基于CFD的工程機(jī)械抗性消聲器設(shè)計(jì)與性能分析[D];山東大學(xué);2009年
2 李艷華;考慮流固耦合的管路系統(tǒng)振動(dòng)噪聲及特性研究[D];哈爾濱工程大學(xué);2011年
,本文編號(hào):2048521
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2048521.html