冷凍水空調(diào)溫濕度先進控制技術(shù)研究
發(fā)布時間:2018-06-17 06:50
本文選題:冷凍水空調(diào) + 變頻技術(shù)。 參考:《浙江大學(xué)》2016年博士論文
【摘要】:隨著人們生活水平的日益提高,室內(nèi)相對濕度對舒適度的影響越來越受到人們的關(guān)注。傳統(tǒng)的冷凍水空調(diào)采用單一溫度的冷凍水進行空氣的降溫除濕,冷凍水的溫度往往大大低于空氣的露點溫度。為了達到合適的溫濕度要求,需要用加熱設(shè)備對過冷的空氣進行再加熱,從而導(dǎo)致能量的浪費。為了提高空調(diào)系統(tǒng)溫濕度控制器的性能,減少系統(tǒng)能量消耗,必須對空調(diào)系統(tǒng)存在的多變量、非線性等特點做出相應(yīng)的處理。本研究首先針對冷凍水空調(diào)冷凍水回路、室內(nèi)空氣回路的運行特點,深入研究非線性控制技術(shù),對回路中的關(guān)鍵變量進行智能控制器設(shè)計。其次,在不增加額外硬件設(shè)備的基礎(chǔ)上,對冷凍水空調(diào)的室內(nèi)溫濕度進行了基于先進控制理論的變頻控制研究。實驗結(jié)果表明,本研究提升了冷凍水空調(diào)關(guān)鍵回路中主要被控變量的控制性能,通過室內(nèi)溫濕度的同時控制很好地提升了室內(nèi)環(huán)境的舒適性,并且達到了節(jié)能的目的。本文圍繞冷凍水空調(diào)室內(nèi)溫濕度控制,主要開展了以下幾個方面的工作:1.利用線性參數(shù)變化模型對蒸發(fā)器出口冷凍水的溫度動態(tài)變化進行了建模,并且在該模型的基礎(chǔ)上,設(shè)計了冷凍水溫度的預(yù)測控制器。通過對制冷劑、冷凍水回路以及空氣側(cè)的換熱特性進行研究,提出以冷凍水泵的頻率作為系統(tǒng)的工況點,采用線性參數(shù)變化模型對蒸發(fā)器出口冷凍水的出水溫度進行了建模。通過把系統(tǒng)在整個工況范圍內(nèi)的非線性表達成典型工況下線性模型的集成,系統(tǒng)的動態(tài)特性得到了很好的描述;诰性參數(shù)變化模型,設(shè)計了預(yù)測控制器,通過多步優(yōu)化得到了整個控制器的表達式。在實際的實驗中,預(yù)測控制器在不同的工況點都達到了比傳統(tǒng)控制器更加短的收斂時間和更好的抗干擾能力。2.針對空氣處理單元(AHU, air handling unit)出口供風溫度具有多變量、非線性的特點,利用神經(jīng)網(wǎng)絡(luò)具有在線學(xué)習(xí)的優(yōu)點,設(shè)計了一種自適應(yīng)神經(jīng)網(wǎng)絡(luò)控制器來對送風干球溫度進行控制。從傳熱傳質(zhì)的機理上對影響室內(nèi)空氣干球溫度的因素進行了分析。針對該過程具有多變量、非線性的特點,利用神經(jīng)網(wǎng)絡(luò)在處理非線性系統(tǒng)方面的優(yōu)點,結(jié)合神經(jīng)網(wǎng)絡(luò)權(quán)值在線更新的功能,提出了一種基于自適應(yīng)神經(jīng)網(wǎng)絡(luò)的空氣干球溫度控制器。該控制器不需要事先建立系統(tǒng)的動態(tài)模型,通過在線地學(xué)習(xí)反饋的運行數(shù)據(jù),實時調(diào)整控制器的運行參數(shù),從而獲得更好的適應(yīng)能力。該存在不確定的系統(tǒng)參數(shù)和外界環(huán)境干擾時,該控制器在收斂時間和超調(diào)量方面都獲得了比傳統(tǒng)控制器更優(yōu)的效果。3.利用神經(jīng)網(wǎng)絡(luò)對冷凍水空調(diào)室內(nèi)溫濕度的耦合特性進行描述,并且結(jié)合預(yù)測控制器的策略,為冷凍水空調(diào)的室內(nèi)溫濕度設(shè)計了控制器。通過對機組的壓縮機和空氣處理單元中的供風風機加入合適的激勵信號,利用神經(jīng)網(wǎng)絡(luò)首次建立了室內(nèi)溫濕度變化與壓縮機轉(zhuǎn)速和供風風機轉(zhuǎn)速之間的關(guān)系。在得到系統(tǒng)的動態(tài)特性之后,借鑒預(yù)測控制的思想,設(shè)計了控制器的優(yōu)化目標函數(shù),通過求解該目標函數(shù)獲得了控制器的最優(yōu)解。在實際系統(tǒng)上進行目標值跟蹤實驗,相對于溫濕度獨立控制器,該控制器能夠更好地處理溫濕度之間的非線性特性,能夠在更短的時間內(nèi)跟蹤溫濕度的目標值。4.為了擴寬控制器的適用范圍,解決控制器適用范圍有限的不足,提出了基于自適應(yīng)神經(jīng)網(wǎng)絡(luò)逆模型的室內(nèi)溫濕度控制器。直接利用動態(tài)系統(tǒng)的逆模型作為控制框架,同時通過對系統(tǒng)運行數(shù)據(jù)進行實時分析,在線更新控制器參數(shù),從而使在能寬的工況范圍內(nèi)獲得了滿意的控制效果。具體實驗也驗證了該控制方法的可行性,目標值跟蹤實驗和擾動測試實驗表明了該控制器比獨立控制具有更加優(yōu)秀的耦合特性處理能力和魯棒性。本文針對冷凍水回路和室內(nèi)控制回路的運行特點,結(jié)合先進控制技術(shù),針對地為冷凍水出水溫度和供風的干球溫度設(shè)計了控制器,提升了回路的控制性能,優(yōu)化了回路的運行。同時利用先進控制技術(shù)對冷凍水空調(diào)的室內(nèi)溫濕度進行了研究,在不增加額外空氣處理設(shè)備的前提下,提升了溫濕度控制的動態(tài)性能,達到了節(jié)能的目的。
[Abstract]:With the improvement of people's living standard, the influence of relative humidity on the comfort degree is getting more and more attention. The traditional frozen water air conditioning uses a single temperature freezing water for air cooling and dehumidification. The temperature of the frozen water is much lower than the dew point temperature of the air. In order to meet the appropriate temperature and humidity requirements, the temperature and humidity need to be added. Heat equipment reheating the supercooled air and resulting in the waste of energy. In order to improve the performance of the temperature and humidity controller of the air conditioning system and reduce the energy consumption of the system, it is necessary to deal with the multivariable and nonlinear characteristics of the air conditioning system. First, the refrigeration water loop and indoor air loop of the frozen water air conditioning system are first studied. The nonlinear control technology is deeply studied and the intelligent controller is designed for the key variables in the loop. Secondly, on the basis of no additional hardware equipment, the variable frequency control based on the advanced control theory is carried out on the indoor temperature and humidity of the frozen water air conditioning. The experimental results show that the frozen water air conditioning is improved by this study. The control performance of the main controlled variables in the key loop can improve the indoor environment comfortableness well and achieve the purpose of energy saving through the simultaneous control of indoor temperature and humidity. In this paper, the following aspects are mainly carried out around the temperature and humidity control in the refrigerated water air conditioning system: 1. using the linear parameter change model to the evaporator. The dynamic change of the temperature of the frozen water is modeled. On the basis of the model, the predictive controller of the freezing water temperature is designed. The heat transfer characteristics of the refrigerant, the frozen water loop and the air side are studied. The frequency of the frozen water pump is taken as the operating point of the system, and the linear parameter change model is used for the evaporation. The water outlet temperature of the frozen water is modeled. The dynamic characteristics of the system are well described by integrating the nonlinear expression of the system in the whole working condition into a linear model under the typical working condition. Based on the linear parameter change model, the predictive controller is designed and the expression of the whole controller is obtained by multi step optimization. In actual experiments, the predictive controller has achieved a shorter convergence time and better anti-interference ability than the traditional controller at different working conditions..2. is a multi variable, nonlinear special point for the air supply temperature of the air processing unit (AHU, air handling unit), and the design of the neural network has the advantage of online learning. An adaptive neural network controller is used to control the temperature of the air dry ball. From the mechanism of heat and mass transfer, the factors affecting the temperature of indoor air dry ball are analyzed. The characteristics of the process are multi variable and nonlinear, and the advantages of neural network are used to deal with the nonlinear system, and the weight value of the neural network is online. An air ball temperature controller based on adaptive neural network is proposed. The controller does not need to set up the dynamic model of the system in advance, and can adjust the operating parameters of the controller in real time by learning the running data of the feedback on-line, thus obtaining better adaptability. When the boundary environment is disturbed, the controller is better than the traditional controller in the time of convergence and overshoot..3. uses the neural network to describe the coupling characteristics of the indoor temperature and humidity in the frozen water air conditioner, and combines the strategy of the predictive controller to design the controller for the indoor temperature and humidity of the frozen water air conditioning. The wind fan in the compressor and air conditioning unit is added to the appropriate excitation signal. The relationship between the indoor temperature and humidity changes with the compressor speed and the speed of the fan is first established by neural network. After getting the dynamic characteristics of the system, the optimization objective function of the controller is designed for reference of the thought of predictive control. The optimal solution of the controller is obtained by solving the objective function. On the actual system, the target value tracking experiment is carried out on the actual system. Compared with the independent temperature and humidity controller, the controller can better deal with the nonlinear characteristics between temperature and humidity, and can track the value of temperature and humidity in a shorter time in order to broaden the scope of application of the controller and solve the problem. The limited scope of application of the controller is limited. An indoor temperature and humidity controller based on the adaptive neural network inverse model is proposed. The inverse model of the dynamic system is used directly as the control frame. At the same time, the parameters of the controller are updated on line through the real-time analysis of the operating data of the system, thus making it satisfactory in the wide range of working conditions. The feasibility of the control method is verified by the specific experiment. The target value tracking experiment and the disturbance test experiment show that the controller has a better coupling characteristic processing ability and robustness than the independent control. This paper is aimed at the running characteristics of the frozen water loop and the indoor control loop, combined with the advanced control technology. The controller is designed for the temperature of the frozen water and the dry ball temperature of the air supply. The control performance of the loop is improved and the operation of the loop is optimized. At the same time, the indoor temperature and humidity of the frozen water air conditioning is studied by using advanced control technology, and the dynamic performance of the temperature and humidity control is improved without increasing the extra air treatment equipment. It's the purpose of saving energy.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP273;TB657.2
【相似文獻】
相關(guān)期刊論文 前10條
1 張波;駱洋;;冷凍水系統(tǒng)的改進[J];機電信息;2012年35期
2 譚來照;;空調(diào)冷凍水系統(tǒng)的流量調(diào)整[J];制冷;1986年02期
3 任素梅;鄭姍姍;賈衡;李炎鋒;廖曉渝;;空調(diào)冷凍水系統(tǒng)控制管理矩陣技術(shù)探討[J];智能建筑;2005年02期
4 付秉恒;孫文哲;翟少斌;張立華;;大溫差冷凍水的適用性研究[J];流體機械;2008年03期
5 陳毓盛;翁燦p,
本文編號:2030137
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2030137.html
最近更新
教材專著