G-M制冷機(jī)直接冷卻的小型超導(dǎo)磁體系統(tǒng)熱分析
本文選題:小型超導(dǎo)磁體系統(tǒng) + G-M制冷機(jī) ; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:制冷機(jī)直接冷卻型超導(dǎo)磁體因其結(jié)構(gòu)簡單、部件緊湊以及無需使用液氦等優(yōu)點(diǎn),在強(qiáng)磁場應(yīng)用領(lǐng)域得到廣泛應(yīng)用。目前,G-M制冷機(jī)是用于冷卻小型超導(dǎo)磁體的主要制冷機(jī)類型之一。由于其自身內(nèi)部運(yùn)行過程復(fù)雜,有諸多不可控因素,制冷機(jī)與磁體系統(tǒng)耦合后的溫度確定是當(dāng)前較難解決的問題。對于G-M制冷機(jī)的不同型號,偏重于采用較大的漏熱估算值判斷制冷機(jī)是否具有足夠的制冷量冷卻磁體,但該方法無法對一二級冷頭的穩(wěn)定溫度和磁體系統(tǒng)溫度場進(jìn)行準(zhǔn)確預(yù)測,同時容易造成制冷機(jī)型號選擇不當(dāng)。為提高一二級冷頭和超導(dǎo)磁體系統(tǒng)耦合溫度場的預(yù)測精度,本文以RSDK-408D2型制冷機(jī)和10TNb3Sn超導(dǎo)磁體系統(tǒng)為例,通過制冷機(jī)冷卻特性曲線擬合和Workbench熱力耦合模塊仿真,提出了一種可較為精確地預(yù)測G-M制冷機(jī)與超導(dǎo)磁體耦合后系統(tǒng)溫度分布的方法。制冷機(jī)冷卻特性曲線是根據(jù)熱平衡原理進(jìn)行實(shí)驗(yàn)得出的制冷機(jī)性能曲線,包含一二級冷頭溫度與冷量輸出之間的重要關(guān)系。本文從熱力學(xué)角度對G-M制冷機(jī)的理論制冷量進(jìn)行分析,考慮各種損失,推出冷卻特性曲線的函數(shù)形式,并采用1Stopt軟件進(jìn)行特性曲線擬合,給出了一二級冷頭運(yùn)行溫度與制冷量的函數(shù)關(guān)系。采用10T Nb3Sn超導(dǎo)磁體結(jié)構(gòu)進(jìn)行系統(tǒng)的漏熱計(jì)算。區(qū)別于傳統(tǒng)算法,將一二級冷頭溫度T1、T2設(shè)為未知量代入各級漏熱方程與冷卻特性曲線方程進(jìn)行求解,計(jì)算得到了制冷機(jī)兩級冷頭的溫度,并以此作為數(shù)值模擬的初始邊界條件。對二元電流引線進(jìn)行了結(jié)構(gòu)優(yōu)化,并模擬了不同電流下電流引線的溫度分布;贏NSYS APDL磁場分析結(jié)果建立系統(tǒng)模型,采用Workbench穩(wěn)態(tài)熱分析模塊將計(jì)算得到的一二級冷頭溫度作為邊界條件進(jìn)行數(shù)值模擬。經(jīng)迭代模擬后得到的結(jié)果與制冷機(jī)冷卻特性曲線吻合,由此得到磁體系統(tǒng)最終溫度分布,驗(yàn)證了制冷機(jī)穩(wěn)態(tài)條件下的冷卻能力。仿真分析了RSDK-408D2制冷機(jī)布置方式下輻射屏、真空罩及HTS電流引線由熱應(yīng)力引起的變形情況。采用C語言編寫程序,計(jì)算勵磁過程中磁場的變化對磁體系統(tǒng)溫度的影響。通過運(yùn)行結(jié)果中磁體溫度隨時間的變化情況確定最佳勵磁速度,以檢驗(yàn)所選制冷機(jī)在動態(tài)變化的勵磁過程中是否具有足夠的冷卻能力。
[Abstract]:Direct cooling superconducting magnets are widely used in the field of high magnetic field due to their simple structure compact components and no need to use liquid helium. At present, G-M refrigerator is one of the main types of cooling superconducting magnets. Because of its complex internal operation process and many uncontrollable factors, it is difficult to solve the problem of determining the temperature of the refrigerator coupled with the magnet system. For different models of G-M refrigerator, it is more important to use large leakage heat estimation value to judge whether the refrigerator has enough cooling magnet, but this method can not accurately predict the stable temperature of the first and second stage cooling head and the temperature field of the magnet system. At the same time, it is easy to cause improper type selection of refrigerators. In order to improve the prediction accuracy of the coupling temperature field between the first and second stage cold head and superconducting magnet system, this paper takes the RSDK-408D2 refrigerator and 10TNb3Sn superconducting magnet system as examples, and simulates the cooling characteristic curve fitting of the refrigerator and the Workbench thermal coupling module. A method for predicting the temperature distribution of G-M refrigerators coupled with superconducting magnets is presented. The cooling characteristic curve of the refrigerator is an experimental one based on the principle of heat balance, which includes the important relationship between the temperature of the first and second stage cooling head and the output of the cooling volume. In this paper, the theoretical refrigerating capacity of G-M refrigerator is analyzed from the viewpoint of thermodynamics, considering various losses, the functional form of the cooling characteristic curve is deduced, and the characteristic curve is fitted by 1Stopt software. The functional relationship between the operating temperature of the first and second stage cooling head and the refrigerating capacity is given. A 10 T NB 3SN superconducting magnet structure is used to calculate the heat leakage of the system. Different from the traditional algorithm, the temperature T _ 1 / T _ 2 of the first and second stage cooling head is set up as an unknown quantity to be solved by the heat leakage equation of all levels and the cooling characteristic curve equation. The temperature of the two stage cooling head of the refrigerator is calculated and used as the initial boundary condition of the numerical simulation. The structure of binary current leads is optimized and the temperature distribution of current leads under different currents is simulated. Based on the results of ANSYS APDL magnetic field analysis, the system model is established, and the temperature of the first and second stage cold head is numerically simulated by using the Workbench steady state thermal analysis module as the boundary condition. The results obtained by iterative simulation are in agreement with the cooling characteristic curve of the refrigerator, and the final temperature distribution of the magnet system is obtained, which verifies the cooling capacity of the refrigerator under steady state conditions. The thermal stress induced deformation of the radiating screen, vacuum hood and HTS current lead under the arrangement of RSDK-408D2 refrigerator is simulated and analyzed. The influence of the magnetic field change on the temperature of the magnet system is calculated by using C language. The optimum excitation speed is determined by changing the temperature of the magnet with time in order to check whether the refrigerator has enough cooling ability in the dynamic excitation process.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB651
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐雄炳;何星;張衛(wèi)東;徐雄炳;;一類G-M系統(tǒng)輪胎吊自動控制系統(tǒng)設(shè)計(jì)[J];電氣自動化;2004年03期
2 張建明;汪政富;;G-M低溫泵系統(tǒng)的故障診斷與分析[J];真空;2008年03期
3 王坤,魯雪生,顧安忠;二級G-M制冷機(jī)(6W/20K)性能測定[J];低溫與超導(dǎo);2004年01期
4 蘇小陶,方志春,龔領(lǐng)會,陸文海,張亮,李來風(fēng);陶瓷材料在G-M制冷機(jī)中的應(yīng)用[J];低溫工程;2004年06期
5 韓琦;G-M制冷機(jī)的電氣控制與保護(hù)[J];低溫與超導(dǎo);2005年03期
6 吳鋼;王惠齡;石零;王建;唐躍進(jìn);汪京容;;G-M制冷機(jī)在高溫超導(dǎo)磁儲能磁體直接冷卻中的應(yīng)用研究[J];低溫與超導(dǎo);2006年01期
7 劉向農(nóng);王鐵軍;唐景春;郝華杰;;G-M制冷機(jī)閥門相位配置的仿真研究[J];低溫與超導(dǎo);2007年05期
8 董宇國;巨永林;;低溫真空泵用緊湊型兩級G-M制冷機(jī)實(shí)驗(yàn)研究[J];制冷技術(shù);2008年03期
9 郝熙歡;巨永林;;大冷量新型蓄冷材料G-M制冷機(jī)的研究進(jìn)展及應(yīng)用[J];低溫與超導(dǎo);2009年09期
10 孫守鎂,胡廷永,吳偉忠,沈維長,李隴旭;G-M型氦致冷機(jī)用塑料活塞環(huán)的研制[J];固體潤滑;1982年01期
相關(guān)會議論文 前7條
1 方志春;蘇小陶;龔領(lǐng)會;張亮;;大冷量單級G-M型制冷機(jī)研制[A];第六屆全國低溫與制冷工程大會會議論文集[C];2003年
2 徐冬;龔領(lǐng)會;徐向東;李來風(fēng);劉輝明;李瑋;陳令玉;;1.5W/4.2K G-M制冷機(jī)開式氦氣液化系統(tǒng)實(shí)驗(yàn)研究[A];第九屆全國低溫工程大會論文集[C];2009年
3 董宇國;巨永林;;單、雙級G-M制冷機(jī)的實(shí)驗(yàn)研究[A];上海市制冷學(xué)會2007年學(xué)術(shù)年會論文集[C];2007年
4 方良;王莉;張亮;;G-M制冷機(jī)填料型冷頭換熱器的實(shí)驗(yàn)研究[A];第四屆全國低溫工程學(xué)術(shù)會議論文集[C];1999年
5 梁文清;龔領(lǐng)會;張亮;;新型換熱器式G-M制冷機(jī)[A];第六屆全國低溫與制冷工程大會會議論文集[C];2003年
6 陸奕驥;巨永林;郝熙歡;;迷宮密封式活塞齒形對G-M制冷機(jī)性能影響的實(shí)驗(yàn)研究[A];上海市制冷學(xué)會2011年學(xué)術(shù)年會論文集[C];2011年
7 龔領(lǐng)會;張亮;肖立業(yè);;冷卻高溫超導(dǎo)磁體的大冷量單級G-M制冷機(jī)[A];加入WTO和中國科技與可持續(xù)發(fā)展——挑戰(zhàn)與機(jī)遇、責(zé)任和對策(下冊)[C];2002年
相關(guān)博士學(xué)位論文 前1條
1 郝熙歡;10K溫區(qū)雙級G-M制冷機(jī)結(jié)構(gòu)優(yōu)化及實(shí)驗(yàn)研究[D];上海交通大學(xué);2012年
相關(guān)碩士學(xué)位論文 前3條
1 張建明;G-M低溫泵的工作過程研究與故障分析[D];中國農(nóng)業(yè)大學(xué);2005年
2 陳艷婕;基于4K G-M制冷機(jī)的固體材料低溫?zé)釋?dǎo)率測量研究[D];上海交通大學(xué);2011年
3 郝華杰;基于MATLAB的G-M制冷機(jī)的建模與仿真[D];合肥工業(yè)大學(xué);2007年
,本文編號:2011818
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2011818.html