高性能半導(dǎo)體聚合物分子取向和薄膜結(jié)構(gòu)的調(diào)控及其電荷輸運(yùn)特性研究
本文選題:半導(dǎo)體聚合物 + 有機(jī)場(chǎng)效應(yīng)晶體管 ; 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2017年博士論文
【摘要】:π共軛小分子和聚合物半導(dǎo)體材料已廣泛地用于制備有機(jī)太陽(yáng)電池、有機(jī)發(fā)光二級(jí)管(OLED)、有機(jī)場(chǎng)效應(yīng)晶體管(OFET)等器件以及各種類(lèi)型傳感器,在大面積低成本柔性電子學(xué)方面展現(xiàn)出巨大的應(yīng)用潛力。但目前有機(jī)半導(dǎo)體材料及其器件還有很多不足之處,例如其載流子遷移率明顯仍低于無(wú)機(jī)半導(dǎo)體材料。這促使人們對(duì)涉及其新材料合成、薄膜器件制備以及載流子傳輸機(jī)制等問(wèn)題做更深入的研究。提高有機(jī)電子器件性能的一個(gè)關(guān)鍵因素是發(fā)展有效的、可規(guī);谋∧ず推骷苽浼夹g(shù),控制有機(jī)半導(dǎo)體薄膜微結(jié)構(gòu)特別是分子取向和堆積特性。然而迄今已發(fā)展的薄膜結(jié)構(gòu)(特別是宏觀取向結(jié)構(gòu))的調(diào)控方法在普適性、規(guī)模化和簡(jiǎn)便性等方面存在許多問(wèn)題。針對(duì)這些問(wèn)題,在本文的工作中,我們選用P(NDI20D-T2)等幾種具有高載流子遷移率的給體-受體(D-A)型共聚物材料作為研究對(duì)象,通過(guò)發(fā)展薄膜制備尤其取向薄膜生長(zhǎng)的新方法,調(diào)控和優(yōu)化薄膜的微觀結(jié)構(gòu)如分子取向、堆積特性和結(jié)晶性等,來(lái)提高OFET的器件性能,并探索有機(jī)薄膜結(jié)構(gòu)與其電荷輸運(yùn)能力之間的內(nèi)在關(guān)系,取得如下主要研究成果。首先,我們采用強(qiáng)磁場(chǎng)下的溶液涂布方法,實(shí)現(xiàn)了對(duì)晶態(tài)和半晶態(tài)聚合物半導(dǎo)體(如D-A型共聚物P(NDI20D-T2)等)薄膜中分子取向和薄膜織構(gòu)的有效控制,獲得大面積高取向的薄膜織構(gòu)。利用綜合性的微結(jié)構(gòu)表征手段,發(fā)現(xiàn)取向薄膜內(nèi)聚合物分子的骨架鏈?zhǔn)茄刂艌?chǎng)方向擇優(yōu)排列。利用同步輻射掠入射X射線(xiàn)衍射分析從不同的溶劑中磁誘導(dǎo)生長(zhǎng)的P(NDI20D-T2)薄膜微結(jié)構(gòu)變化,提出并證實(shí)了半導(dǎo)體聚合物薄膜的磁致取向生長(zhǎng)的動(dòng)力學(xué)機(jī)制,明確了聚合物溶液中的分子聚集態(tài)誘發(fā)和決定了磁致取向生長(zhǎng)的過(guò)程。并且通過(guò)制備基于強(qiáng)磁場(chǎng)誘導(dǎo)生長(zhǎng)的取向薄膜的OTFT器件,發(fā)現(xiàn)強(qiáng)磁誘導(dǎo)取向可顯著提高聚合物半導(dǎo)體的載流子遷移率(達(dá)4倍),實(shí)現(xiàn)很高的載流子遷移率各向異性。此外還采用時(shí)間調(diào)制磁場(chǎng)技術(shù)實(shí)現(xiàn)了對(duì)P (NDI20D-T2)薄膜面外方向分子取向和織構(gòu)的調(diào)控,使分子鏈間face-on堆積程度顯著增強(qiáng)、面外方向結(jié)晶性提高,并使面外方向上的電子遷移率提高了近兩個(gè)量級(jí)。同時(shí)還深入探究了時(shí)間調(diào)制磁場(chǎng)調(diào)控薄膜結(jié)構(gòu)的過(guò)程中,溶液涂布的成膜條件參數(shù)(如溶劑、成膜時(shí)間等)對(duì)分子取向和薄膜織構(gòu)的影響。上述工作為探索進(jìn)一步提高高性能D-A共聚物的光電性能提供了新途徑,也對(duì)深化認(rèn)識(shí)有機(jī)材料在強(qiáng)磁誘導(dǎo)下的生長(zhǎng)動(dòng)力學(xué)機(jī)制和有機(jī)薄膜結(jié)構(gòu)與器件性能間的內(nèi)在關(guān)系具有指導(dǎo)性作用。2.為了解決取向薄膜存在的形貌和厚度不均勻性問(wèn)題,我們首次采用強(qiáng)磁場(chǎng)下的溶劑退火方法,對(duì)溶液旋涂沉積的兩種D-A型共聚物P(NDI2OD-T2)和DPP2T薄膜進(jìn)行微結(jié)構(gòu)的調(diào)控,實(shí)現(xiàn)了大面積高度取向的薄膜織構(gòu)。通過(guò)綜合的微結(jié)構(gòu)表征手段,發(fā)現(xiàn)采用這一方法制備的聚合物薄膜,不僅形貌和厚度均一性得到改善,并且薄膜中分子取向程度和薄膜結(jié)晶性顯著地優(yōu)于磁場(chǎng)下溶液涂布法制備的取向薄膜。同時(shí)還研究了磁場(chǎng)下溶劑退火的條件參數(shù)對(duì)所制備的半導(dǎo)體聚合物薄膜結(jié)構(gòu)和形貌的影響,發(fā)現(xiàn)退火時(shí)間的延長(zhǎng)和高沸點(diǎn)溶劑顯著地提高薄膜的分子取向度和結(jié)構(gòu)有序度。基于實(shí)驗(yàn)結(jié)果,提出了磁誘導(dǎo)的溶劑退火調(diào)控聚合物薄膜結(jié)構(gòu)的機(jī)理。最后還利用時(shí)間調(diào)制磁場(chǎng)方法結(jié)合溶劑退火調(diào)控了 P(NDI2OD-T2)薄膜面外方向的分子取向,提高了薄膜中face-on堆積程度。磁誘導(dǎo)的溶劑退火方法很好地與有機(jī)半導(dǎo)體器件制備工藝相兼容,因而將為提高OFET和太陽(yáng)電池等器件的性能提供了一條很有效的途徑。3.采用改進(jìn)的溶液浸涂法,成功地成長(zhǎng)出大面積宏觀取向的D-A共聚物P(NDI2OD-T2)和PTHBDTP薄膜。我們利用偏光顯微鏡、偏振紫外-可見(jiàn)光吸收譜和原子力顯微鏡等測(cè)量技術(shù),發(fā)現(xiàn)薄膜中聚合物分子主鏈骨架沿成膜時(shí)液面下移方向擇優(yōu)取向,形成取向的納米尺度有序晶疇。我們采用固-液界面處的表面張力誘導(dǎo)和溶劑蒸發(fā)誘導(dǎo)的分子自組織過(guò)程解釋了浸涂法生長(zhǎng)聚合物取向薄膜的微觀機(jī)制。使用P(NDI2OD-T2)取向薄膜制備了場(chǎng)效應(yīng)晶體管,顯著地提高了電子遷移率(可達(dá)4倍),并實(shí)現(xiàn)高達(dá)19的載流子各向異性。這可歸因于共軛的聚合物主鏈骨架擇優(yōu)取向引起電荷傳導(dǎo)通路的變化。我們提出的簡(jiǎn)單有效的聚合物成膜方法具有較強(qiáng)的普適性,將在發(fā)展低成本、高性能有機(jī)電子器件方面具有重要的應(yīng)用潛力。4.出于降低器件制作成本同時(shí)提高器件性能的考慮,我們采用三種D-A共聚物半導(dǎo)體與廉價(jià)的聚苯乙烯混合制備半導(dǎo)體/絕緣體共混薄膜,利用共混薄膜制備OFET器件,實(shí)現(xiàn)較純D-A共聚物器件更高的載流子遷移率。然而發(fā)現(xiàn)基于不同D-A共聚物制備的共混膜二極管器件,其性能存在巨大的差別。我們采用綜合的薄膜結(jié)構(gòu)表征手段研究聚合物共混膜的結(jié)構(gòu)和形貌,發(fā)現(xiàn)D-A共聚物自身的分子聚集特性和結(jié)晶性對(duì)其相應(yīng)的共混薄膜的微結(jié)構(gòu)具有決定性的影響,進(jìn)而顯著地影響載流子在共混薄膜中不同方向上的傳輸行為。例如對(duì)于結(jié)構(gòu)有序度低的PBDTTT,其PBDTTT/PS薄膜中PBDTTT是均勻分散在整個(gè)薄膜中,形成了三維立體的連續(xù)的載流子傳輸通道。而對(duì)于結(jié)晶有序度高P(NDI2OD-T2)和PDVT,在與PS形成的混合薄膜中,半導(dǎo)體和絕緣體形成明顯的分層結(jié)構(gòu),半導(dǎo)體成分傾向于富集在薄膜表面,這對(duì)OFET和二極管這兩種不同類(lèi)型器件的電荷傳輸產(chǎn)生截然不同的影響。
[Abstract]:Pion conjugated small molecules and polymer semiconductor materials have been widely used in the preparation of organic solar cells, organic light emitting two transistors (OLED), airport effect transistors (OFET) and various types of sensors, which show great potential for application in large area and low cost flexible electronics. However, organic semiconductor materials and their devices are currently used. There are many shortcomings, such as the carrier mobility of the carrier is still lower than the inorganic semiconductor material. This has prompted a more thorough study of the problems involved in the synthesis of new materials, the preparation of thin film devices and the carrier transmission mechanism. And device preparation technology to control the microstructures of organic semiconductor thin films, especially molecular orientation and accumulation characteristics. However, there are many problems in the regulation, scale and simplicity of the developed membrane structures (especially the macro oriented structure). In this paper, we choose P (NDI20D-) T2) several kinds of donor acceptor (D-A) copolymer materials with high carrier mobility are used as the research object. By developing new methods to prepare thin films, the microstructure of the thin films, such as molecular orientation, stacking properties and crystallinity, is regulated and optimized to improve the performance of OFET devices, and to explore the structure and structure of organic films. The intrinsic relationship between the charge transport capacity and the intrinsic relationship of the charge transport capacity is obtained as follows. First, we use the solution coating method under the strong magnetic field to realize the effective control of the molecular orientation and the film texture in the crystalline and semi crystalline polymer semiconductors (such as D-A type copolymer P (NDI20D-T2)), and obtain a large area and high orientation film. By using a comprehensive microstructural characterization method, it is found that the skeleton chain of polymer molecules in the orientation film is optimized along the direction of magnetic field. The microstructural changes of magnetic induced P (NDI20D-T2) films from different solvents are analyzed by synchrotron grazing incidence X ray diffraction, and the magnetization of the semiconductor polymer film is proved and confirmed. The kinetic mechanism of the growth is made clear that the molecular aggregation state in the polymer solution induces and determines the process of magnetic orientation growth. And by preparing the OTFT devices based on the orientation film based on the strong magnetic field, it is found that the strong magnetic induction orientation can significantly increase the carrier mobility of the polymer semiconductor (up to 4 times) and achieve a high load. In addition, the transfer rate of the flow is anisotropic. In addition, the time modulated magnetic field technique is used to control the orientation and texture of the P (NDI20D-T2) thin films. The accumulation of face-on between the molecules is enhanced significantly, the crystallization of the surface is increased, and the electric migration rate in the outside of the plane is increased by nearly two orders of magnitude. In the process of modulating the structure of the thin film by the time modulated magnetic field, the influence of the condition parameters (such as solvent, film forming time) on the molecular orientation and the texture of the film is investigated. The above work provides a new way to further improve the photoelectric properties of high performance D-A copolymers, and also to deepen the understanding of the strong magnetic induction of the organic materials. The intrinsic relationship between the growth kinetics and the structure of the organic film and the performance of the device has a guiding role. In order to solve the problem of the heterogeneity of the morphology and thickness of the orientation films, we used the solvent annealing method under the strong magnetic field for the first time, and the two kinds of D-A type copolymer P (NDI2OD-T2) and DPP2T films deposited by the solution were micro. The large area and highly oriented thin film texture is realized by the structure regulation. By means of comprehensive microstructural characterization, it is found that the polymer films prepared by this method have not only improved the uniformity of the morphology and thickness, but also the degree of molecular orientation and the crystallinity of the film are significantly better than the orientation thinning prepared by the solution coating method under the magnetic field. At the same time, the influence of the condition parameters of solvent annealing on the structure and morphology of the prepared semiconductor polymer film is also studied. It is found that the prolongation of the annealing time and the high boiling point solvent greatly increase the molecular orientation and the structure order of the film. Based on the experimental results, the magnetic induced solvent annealing is proposed to regulate the polymer film. Finally, the molecular orientation of the P (NDI2OD-T2) film is controlled by the time modulated magnetic field method combined with the solvent annealing. The degree of face-on accumulation in the film is improved. The magnetic induced solvent annealing method is well combined with the preparation process of the organic semiconductor device, so it will improve the OFET and solar cells and other devices. The performance of.3. is an effective way to develop a large area macrooriented D-A copolymer P (NDI2OD-T2) and PTHBDTP thin film by improved solution leaching method. We use polarizing microscope, polarization ultraviolet visible absorption spectrum and atomic force microscope to find the backbone of polymer chain in the film. The orientation of nanoscale ordered crystal domains was formed in the direction of the liquid surface movement along the film formation. The micromechanism of the polymer oriented film was explained by the surface tension induction and solvent evaporation induced by the solid liquid interface. The field effect transistors were prepared by using the P (NDI2OD-T2) orientation film. It improves the electron mobility (up to 4 times) and achieves up to 19 of the carrier anisotropy. This is attributable to the change in the charge conduction pathway caused by the preferred orientation of the conjugated polymer backbone. The simple and effective polymer film forming method has a strong universality and will develop low cost and high performance organic electronic devices. In order to reduce the cost of device fabrication and improve the performance of devices, we use three kinds of D-A copolymer semiconductors and cheap polystyrene to prepare semiconductor / insulator blends, and make use of the blend film to prepare OFET devices to realize higher carrier migration than the pure D-A copolymer devices. However, it is found that the properties of the blend membrane diodes based on the different D-A copolymers have great differences. We have studied the structure and morphology of the polymer blends by means of comprehensive thin film characterization, and found that the molecular aggregation and crystallinity of the D-A copolymers have a decisive effect on the microstructure of the corresponding blend films. The qualitative effect has a significant effect on the transport of carriers in different directions in the blend film. For example, for PBDTTT with low structure order, the PBDTTT in the PBDTTT/PS film is uniformly dispersed throughout the film, forming a three-dimensional and continuous carrier transport channel. For crystal order, P (NDI2OD-T2) and PDVT, In the mixed film formed with PS, semiconductors and insulators form a distinct stratified structure, and the semiconductor composition tends to be enriched on the surface of the film, which has a very different effect on the charge transfer of the two different types of devices such as OFET and diode.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O631.1;TB383.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許曉秋,李景慶,張爽男,田曉明;間歇加力試驗(yàn)法在聚合物分子運(yùn)動(dòng)研究中的應(yīng)用[J];天津大學(xué)學(xué)報(bào);2002年01期
2 韓杰;唐金星;劉崢君;;聚合物分子尺寸大小及其與巖石孔喉尺寸配伍關(guān)系的試驗(yàn)研究[J];長(zhǎng)江大學(xué)學(xué)報(bào)(自科版)理工卷;2006年04期
3 任駿;李相國(guó);曹斌;;表面引發(fā)活性聚合制備聚合物分子刷研究進(jìn)展[J];昆明理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年04期
4 黃賦云;;依賴(lài)水汽發(fā)電的聚合物薄膜[J];現(xiàn)代塑料加工應(yīng)用;2013年04期
5 林文學(xué);劉勁松;;染料聚合物薄膜輻射光譜[J];中國(guó)科技信息;2008年21期
6 胡廷永;聚合物摩擦學(xué)的研究動(dòng)向—記國(guó)際聚合物磨損及其控制討論會(huì)[J];固體潤(rùn)滑;1985年03期
7 王志剛,任詮,郭士義,牟曉東,張光輝,許東;各向異性聚合物薄膜參數(shù)的測(cè)量與計(jì)算[J];光學(xué)學(xué)報(bào);1998年04期
8 張水英,王峰,楊艷芳,曹莊琪,沈啟舜;光漂白對(duì)極化聚合物薄膜非線(xiàn)性效應(yīng)的影響[J];光電工程;2004年02期
9 呂仕智,曹莊琪,王峰,沈啟舜,楊艷芳;聚合物薄膜厚度和極化工藝對(duì)二次諧波的影響[J];光電工程;2004年04期
10 蔡小平;高璇;李靜一;;聚合物薄膜耐放電性比較(摘要)[J];絕緣材料通訊;1987年05期
相關(guān)會(huì)議論文 前10條
1 趙漢英;;聚合物分子刷的研究[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年
2 侯劍輝;;光伏聚合物分子設(shè)計(jì)[A];2013年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集——主題G:光電功能高分子[C];2013年
3 熊林峰;張慧;黃琨;;聚合物分子刷負(fù)載催化的研究[A];2013年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集——主題F:功能高分子[C];2013年
4 劉琛陽(yáng);;聚合物分子流變學(xué)和幾個(gè)應(yīng)用示例[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第18分會(huì)場(chǎng)摘要集[C];2012年
5 王記增;;考慮熵影響的亞細(xì)胞生物力學(xué)研究[A];第五屆全國(guó)固體力學(xué)青年學(xué)者研討會(huì)會(huì)議日程摘要集[C];2012年
6 王甜;孫德軍;;高溫高鹽對(duì)磺化類(lèi)聚合物分子尺寸和親水性的影響[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第12分會(huì)場(chǎng)摘要集[C];2012年
7 湯啟云;胡文兵;;聚合物超薄膜結(jié)構(gòu)松弛的分子模擬研究[A];中國(guó)化學(xué)會(huì)第十四屆膠體與界面化學(xué)會(huì)議論文摘要集-第5分會(huì):膠體與界面化學(xué)中的理論問(wèn)題[C];2013年
8 范星河;沈志豪;周其鳳;;基于PLED的甲殼型聚合物分子設(shè)計(jì)[A];2012年兩岸三地高分子液晶態(tài)與超分子有序結(jié)構(gòu)學(xué)術(shù)研討會(huì)(暨第十二屆全國(guó)高分子液晶態(tài)與超分子有序結(jié)構(gòu)學(xué)術(shù)論文報(bào)告)會(huì)議論文集[C];2012年
9 楊旭東;申博文;李艾橘;陳潔;楊柏;林權(quán);;熒光功能聚合物分子刷器件的構(gòu)筑及對(duì)TNT的檢測(cè)[A];中國(guó)化學(xué)會(huì)第十四屆膠體與界面化學(xué)會(huì)議論文摘要集-第1分會(huì):表面界面與納米結(jié)構(gòu)材料[C];2013年
10 董小寧;張俊彥;卞鳳玲;程錦春;;耐溶劑聚合物薄膜的制備及其表征[A];甘肅省化學(xué)會(huì)第二十五屆年會(huì)、第七屆甘肅省中學(xué)化學(xué)教學(xué)經(jīng)驗(yàn)交流會(huì)論文集[C];2007年
相關(guān)重要報(bào)紙文章 前1條
1 梓樺;聚合物薄膜修復(fù)破裂血管[N];醫(yī)藥經(jīng)濟(jì)報(bào);2003年
相關(guān)博士學(xué)位論文 前10條
1 潘國(guó)興;高性能半導(dǎo)體聚合物分子取向和薄膜結(jié)構(gòu)的調(diào)控及其電荷輸運(yùn)特性研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
2 熊林峰;基于聚合物分子刷及其納米管狀材料的合成與催化應(yīng)用[D];華東師范大學(xué);2017年
3 黃進(jìn);含炔基芴的新型共軛半導(dǎo)體光電聚合物的合成及其應(yīng)用[D];南京大學(xué);2015年
4 黃淵帥;基于苯并二噻吩及芴的聚合物光伏材料的合成和性能研究[D];湘潭大學(xué);2015年
5 徐張平;基于雙氧噻吩衍生物的可溶液操作電致變色聚合物的合成與性能研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
6 趙曉林;納米結(jié)構(gòu)鐵電聚合物薄膜器件的制備與物理特性研究[D];中國(guó)科學(xué)院研究生院(上海技術(shù)物理研究所);2016年
7 卞臨沂;稠環(huán)噻吩類(lèi)窄帶隙聚合物的設(shè)計(jì)及光電性能研究[D];南京理工大學(xué);2015年
8 羅國(guó)平;基于光學(xué)工程實(shí)現(xiàn)高效聚合物太陽(yáng)電池[D];華南理工大學(xué);2016年
9 陳曉春;聚合物薄膜退火自組織結(jié)構(gòu)的形成機(jī)理及其應(yīng)用[D];南京大學(xué);2012年
10 蔣友宇;稠環(huán)結(jié)構(gòu)聚合物電池給受體材料的制備和光伏性能[D];武漢理工大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 孫曉雪;聚合物分子模型的Brown動(dòng)力學(xué)模擬[D];青島大學(xué);2012年
2 司甲清;聚合物分子刷的制備及表征[D];湘潭大學(xué);2011年
3 何磊;染料摻雜聚合物薄膜的光譜下轉(zhuǎn)換研究[D];華南理工大學(xué);2015年
4 田厚寬;潤(rùn)濕脊發(fā)展動(dòng)力學(xué)與聚合物薄膜黏彈性的關(guān)系研究[D];浙江理工大學(xué);2015年
5 馮正洋;可降解聚酯酰胺共聚物的制備及其性能研究[D];湖南工業(yè)大學(xué);2015年
6 田松;新型熱固性含氟聚芳醚的制備與性能[D];鄭州大學(xué);2015年
7 李根舉;外場(chǎng)作用下聚合物薄膜微結(jié)構(gòu)的變化及不穩(wěn)定性的研究[D];蘇州大學(xué);2015年
8 孫剛;聚合物太陽(yáng)電池電極修飾材料的研究[D];華北電力大學(xué);2015年
9 王猛;基于氟代喹喔啉D-π-A型聚合物給體光伏材料的設(shè)計(jì)合成及其性能研究[D];北京化工大學(xué);2015年
10 李泉;非晶聚合物界面上聚β-羥基丁酸酯超薄膜動(dòng)熔融重結(jié)晶行為研究[D];北京化工大學(xué);2015年
,本文編號(hào):1920356
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1920356.html