R290和R32制冷空調(diào)系統(tǒng)火災(zāi)危險性的理論及實驗研究
本文選題:R290 + R32; 參考:《天津大學(xué)》2016年博士論文
【摘要】:目前家用空調(diào)器中使用的制冷劑主要是R22和R410A,但這兩種制冷劑存在ODP值或GWP值高的缺點。從環(huán)保的角度來說,這兩種制冷劑需要被替代。R290、R32是兩種潛在的替代制冷劑,但這兩種制冷劑均是可燃的。本文對R290、R32兩種可燃制冷劑的火災(zāi)危險性開展了研究。使用20L球爆炸實驗裝置,研究了R290、R32的爆炸參數(shù),包括不同濃度時的爆炸壓力、爆炸壓力上升速率、初始壓力提高后R290的爆炸壓力等。結(jié)果表明初始壓力為常壓時,R32的最大爆炸壓力比R290略高。建立了用于模擬普通公寓主臥室、次臥室的實驗房間。對分體壁掛式空調(diào)器使用R290制冷劑發(fā)生泄漏后,在房間內(nèi)的濃度分布情況進行了實驗研究。濃度分布實驗用以確定R290泄漏后與空氣形成的燃爆的范圍。結(jié)果表明,燃爆區(qū)域僅在于室內(nèi)機附近區(qū)域。在實驗房間內(nèi)開展了R290發(fā)生燃爆后果的實驗研究。R290泄漏結(jié)束后遇到引火源可能會發(fā)生爆炸,但爆炸的最大超壓約為6.5 kPa。爆炸超壓未對房間的門、窗造成明顯損壞。R290泄漏過程中遇到引火源可能會發(fā)生持續(xù)燃燒,從而會引燃室內(nèi)機自身。這種情況下會產(chǎn)生的大量有毒有害煙氣,對房間內(nèi)的人員造成很大損害。使用家具量熱器研究了外部火引燃空調(diào)室內(nèi)機的后果。結(jié)果表明外部火引燃室內(nèi)機后,使用R290制冷劑的空調(diào)器與未充注制冷劑相比總放熱量提高了約12%。熱釋放速率峰值約為1000kW。室內(nèi)機塑料外殼是發(fā)熱量、發(fā)煙量的主要來源。研究了使用R290制冷劑后,室外機發(fā)生泄漏后的燃爆后果。發(fā)生在室外機附近的燃爆不會對周圍相鄰的室外機造成明顯損壞。但R290泄漏過程中遇到引火源會發(fā)生持續(xù)燃燒,從而將室外機自身燒毀。研究了空調(diào)系統(tǒng)充注R290、R22等情況下,室內(nèi)機被引燃后的生成物。開展實驗測定了CO2、CO生成量。分析了典型含氟制冷劑在燃燒或熱分解作用下生成HF的情況。
[Abstract]:At present, the refrigerants R22 and R410A are mainly used in domestic air conditioners, but these two refrigerants have the disadvantages of high ODP or GWP values. In environmental terms, these two refrigerants need to be replaced. R290 / R32 is two potential alternative refrigerants, but both are combustible. In this paper, the fire hazard of two kinds of flammable refrigerants, R290 and R32, is studied. The explosion parameters of R290 and R32 were studied by using a 20L ball explosion device, including the explosion pressure at different concentrations, the rate of explosion pressure rise, and the explosion pressure of R290 after the initial pressure was increased. The results show that the maximum explosion pressure of R32 is slightly higher than that of R290 when the initial pressure is normal. An experimental room was established to simulate the master bedroom and secondary bedroom of the common apartment. The concentration distribution in the room of split wall mounted air conditioner after leakage with R290 refrigerant was studied experimentally. Concentration distribution experiments are used to determine the range of explosions formed with air after the R290 leak. The results show that the explosion area lies only in the area near the indoor unit. An experimental study on the consequences of R290 explosion was carried out in the experimental room. The explosion may occur after the end of the R290 leak, but the maximum overpressure of the explosion is about 6.5 KPA. The explosion overpressure does not cause obvious damage to the door and window of the room. During the leakage of R290, the ignition source may continue to burn, thus igniting the indoor unit itself. A large amount of toxic and harmful smoke will be produced in this case, causing great damage to the personnel in the room. Using furniture calorimeter, the effect of external fire ignition on indoor air conditioning unit is studied. The results show that the total heat release of the air conditioner with R290 refrigerant is about 12% higher than that of the unfilled refrigerant after external fire ignition. The peak heat release rate is about 1000kW. Indoor machine plastic shell is the main source of heat and smoke. The consequences of explosion after leakage of outdoor unit with R290 refrigerant were studied. The explosion near the outdoor unit will not cause obvious damage to the adjacent outdoor unit. However, during the R290 leakage process, the fire source will burn continuously, which will destroy the outdoor unit itself. Under the condition that the air conditioning system is filled with R290 and R22, the combustible product of the indoor unit is studied. Co _ 2 CO _ 2 production was determined experimentally. The formation of HF from typical fluorine-containing refrigerants under combustion or thermal decomposition was analyzed.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TB657.2
【參考文獻】
相關(guān)期刊論文 前10條
1 邵龍慶;袁樹杰;金超;宋銀芳;;室內(nèi)常用裝潢材料火災(zāi)煙氣毒性危險級別研究[J];廣州化工;2015年11期
2 劉全義;劉奕;張輝;楊銳;李志鵬;;通風(fēng)強度對空調(diào)可燃制冷劑泄漏安全性的影響[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報;2013年06期
3 況敏;肖曉玲;康忠明;劉自敬;陳煥濤;鮑雪球;葉兵;;空調(diào)蒸發(fā)器銅管失效原因分析[J];材料研究與應(yīng)用;2013年04期
4 羅振敏;張群;王華;程方明;王濤;鄧軍;;基于FLACS的受限空間瓦斯爆炸數(shù)值模擬[J];煤炭學(xué)報;2013年08期
5 薛崗;牛坤;宋文琦;郭智愷;李廷勛;;制冷劑二氟甲烷熱解生成氟化氫的實驗研究[J];中國安全生產(chǎn)科學(xué)技術(shù);2013年06期
6 鄭南;;淺談可燃制冷劑的模擬泄漏試驗[J];日用電器;2013年01期
7 楊昭;王曉明;吳曦;張馨;劉煥衛(wèi);;變溫工況下可燃制冷劑的爆炸極限[J];天津大學(xué)學(xué)報;2012年10期
8 秦彪;李瑛;王芳;陳敏;;可燃制冷劑空調(diào)器性能測試實驗室的研制[J];低溫與超導(dǎo);2012年08期
9 劉煥衛(wèi);楊昭;張奎;;可燃制冷劑惰化機理及實驗研究[J];工程熱物理學(xué)報;2011年08期
10 朱明善;史琳;;制冷工質(zhì)燃燒(分解)及生成有毒氣體的探討[J];制冷學(xué)報;2011年03期
,本文編號:1887800
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1887800.html