天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 工程管理論文 >

灰狼算法在典型車(chē)間調(diào)度問(wèn)題中的應(yīng)用研究

發(fā)布時(shí)間:2018-05-09 01:24

  本文選題:典型車(chē)間調(diào)度問(wèn)題 + 不相關(guān)并行機(jī)調(diào)度; 參考:《昆明理工大學(xué)》2017年碩士論文


【摘要】:生產(chǎn)調(diào)度是制造業(yè)企業(yè)生產(chǎn)管理的重要工作之一。其中,并行機(jī)車(chē)間調(diào)度問(wèn)題和置換流水車(chē)間調(diào)度問(wèn)題是兩類(lèi)典型的車(chē)間調(diào)度問(wèn)題,它們是n個(gè)工件在m臺(tái)機(jī)器上加工的許多實(shí)際生產(chǎn)系統(tǒng)生產(chǎn)調(diào)度問(wèn)題的簡(jiǎn)化模型。其中,前者的特征是n個(gè)的工件中的每個(gè)工件可以在m臺(tái)機(jī)器中的任意一臺(tái)上進(jìn)行加工,而后者的特征是n個(gè)工件以相同順序經(jīng)過(guò)m臺(tái)機(jī)器進(jìn)行加工。業(yè)已證明3臺(tái)以上機(jī)器的兩類(lèi)典型車(chē)間調(diào)度問(wèn)題即為NP難題,也是目前生產(chǎn)調(diào)度研究的熱點(diǎn)問(wèn)題。近年來(lái),隨著計(jì)算機(jī)技術(shù)和人工智能的飛速發(fā)展,生產(chǎn)調(diào)度的智能算法得到了越來(lái)越廣泛的關(guān)注。灰狼算法就是一種新近提出的智能優(yōu)化算法,由于其有效性高效性,已被應(yīng)用于求解多種困難的組合優(yōu)化問(wèn)題。本文運(yùn)用灰狼算法對(duì)以上兩種典型車(chē)間調(diào)度問(wèn)題進(jìn)行研究。首先,以最大完工時(shí)間為優(yōu)化目標(biāo),針對(duì)不相關(guān)并行機(jī)調(diào)度問(wèn)題和置換流水車(chē)間調(diào)度問(wèn)題,利用灰狼算法思想,基于工序的編碼方式隨機(jī)產(chǎn)生初始種群,采用高效的更新算子分別實(shí)現(xiàn)對(duì)30個(gè)隨機(jī)產(chǎn)生的實(shí)例和240個(gè)標(biāo)準(zhǔn)測(cè)試實(shí)例的測(cè)試,并將測(cè)試結(jié)果與遺傳算法進(jìn)行對(duì)比,實(shí)驗(yàn)結(jié)果表明了灰狼算法的可行性與有效性。其次,以最大完工時(shí)間和總流程時(shí)間為優(yōu)化目標(biāo),針對(duì)多目標(biāo)置換流水車(chē)間調(diào)度問(wèn)題,利用多目標(biāo)灰狼算法思想,采用基于工序的編碼方式,使用構(gòu)造啟發(fā)式算法NEH和隨機(jī)產(chǎn)生兩種方式產(chǎn)生初始種群,實(shí)現(xiàn)對(duì)24個(gè)實(shí)例的測(cè)試,并將結(jié)果與經(jīng)典多目標(biāo)算法——SPEA2算法進(jìn)行比較,測(cè)試結(jié)果表明了多目標(biāo)灰狼算法的優(yōu)越性。最后,將求解置換流水車(chē)間調(diào)度問(wèn)題的灰狼算法應(yīng)用于解決工程實(shí)例,相比回溯搜索算法最優(yōu)解加快430s,使得總完工時(shí)間縮短了 9.75%,進(jìn)一步驗(yàn)證了灰狼算法的優(yōu)越性。
[Abstract]:Production scheduling is one of the important work of manufacturing enterprise production management. Among them, the parallel machine shop scheduling problem and the replacement flow shop scheduling problem are two kinds of typical job shop scheduling problems. They are the simplified models of the production scheduling problems of many practical production systems in which n jobs are processed on m machines. The feature of the former is that each workpiece of n workpieces can be machined on any one of m machines, while the latter is that n workpieces are machined by m machines in the same order. It has been proved that two typical job shop scheduling problems for more than three machines are NP problems and are also hot issues in production scheduling research. In recent years, with the rapid development of computer technology and artificial intelligence, the intelligent algorithm of production scheduling has been paid more and more attention. Grey wolf algorithm is a newly proposed intelligent optimization algorithm. Because of its high efficiency and efficiency, it has been applied to solve a variety of difficult combinatorial optimization problems. In this paper, the gray wolf algorithm is used to study the above two typical job shop scheduling problems. Firstly, aiming at the scheduling problem of unrelated parallel machines and the replacement flow shop scheduling problem, taking the maximum completion time as the optimization goal, the initial population is generated randomly based on the coding method based on the gray wolf algorithm. An efficient update operator is used to test 30 randomly generated and 240 standard test cases, and the test results are compared with the genetic algorithm. The experimental results show the feasibility and effectiveness of the gray wolf algorithm. Secondly, taking the maximum completion time and the total flow time as the optimization goal, aiming at the multi-objective replacement flow shop scheduling problem, using the multi-objective gray wolf algorithm, the coding method based on the working procedure is adopted. The initial population is generated by constructing heuristic algorithm NEH and random generation method, and the test results of 24 instances are realized, and the results are compared with the classical multi-objective algorithm, SPEA2 algorithm. The test results show the superiority of the multi-objective gray wolf algorithm. Finally, the gray wolf algorithm is applied to solve the replacement flow shop scheduling problem. Compared with the backtracking search algorithm, the optimal solution is 430s faster, which shortens the total completion time by 9.75, and further verifies the superiority of the gray wolf algorithm.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TB49

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 吳楚格;王凌;鄭曉龍;;求解不相關(guān)并行機(jī)調(diào)度的一種自適應(yīng)分布估計(jì)算法[J];控制與決策;2016年12期

2 梅攀;吳中元;;多品種非同等并行機(jī)作業(yè)車(chē)間能效優(yōu)化調(diào)度[J];機(jī)電工程技術(shù);2016年09期

3 毛森茂;瞿凱平;陳藝璇;程樂(lè)峰;余濤;;基于灰狼多目標(biāo)算法的電網(wǎng)碳-能復(fù)合流優(yōu)化調(diào)度[J];新型工業(yè)化;2016年09期

4 陳昌帥;;二進(jìn)制灰狼優(yōu)化算法的研究與分析[J];信息系統(tǒng)工程;2016年07期

5 楊紅光;劉建生;;一種結(jié)合灰狼優(yōu)化和K-均值的混合聚類(lèi)算法[J];江西理工大學(xué)學(xué)報(bào);2015年05期

6 齊學(xué)梅;王宏濤;陳付龍;羅永龍;;求解多目標(biāo)PFSP的改進(jìn)遺傳算法[J];計(jì)算機(jī)工程與應(yīng)用;2015年11期

7 呂新橋;廖天龍;;基于灰狼優(yōu)化算法的置換流水線(xiàn)車(chē)間調(diào)度[J];武漢理工大學(xué)學(xué)報(bào);2015年05期

8 陳可嘉;周曉敏;;多目標(biāo)置換流水車(chē)間調(diào)度的改進(jìn)食物鏈算法[J];中國(guó)機(jī)械工程;2015年03期

9 王騰;周炳海;;Scheduling Multiple Orders per Job with Multiple Constraints on Identical Parallel Machines[J];Journal of Donghua University(English Edition);2013年06期

10 張剛志;周炳海;;帶換模約束的非等效并行機(jī)作業(yè)族調(diào)度方法[J];計(jì)算機(jī)集成制造系統(tǒng);2013年12期

相關(guān)碩士學(xué)位論文 前3條

1 林群;回溯搜索算法的改進(jìn)及其工程應(yīng)用[D];華中科技大學(xué);2015年

2 歷莉;基于混合離散微粒群算法求解復(fù)雜并行機(jī)生產(chǎn)調(diào)度問(wèn)題[D];昆明理工大學(xué);2015年

3 莫禎貞;改進(jìn)粒子群算法在模糊環(huán)境下平行機(jī)批調(diào)度問(wèn)題中的應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2010年

,

本文編號(hào):1863957

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1863957.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)c37f3***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com