基于群智能優(yōu)化算法的流水車間調(diào)度問題若干研究
本文選題:生產(chǎn)調(diào)度 + 流水車間; 參考:《華東理工大學(xué)》2014年博士論文
【摘要】:生產(chǎn)調(diào)度問題存在于大量實(shí)際制造業(yè)與服務(wù)業(yè)中,如石化業(yè)、煙草業(yè)、紡織業(yè)、造紙業(yè)、制藥業(yè)以及食品業(yè)等,并在其中發(fā)揮著非常重要的作用。簡單來說,生產(chǎn)調(diào)度問題就是如何在給定的時間約束內(nèi)合理地安排分配有限的資源,使得一個或多個目標(biāo)達(dá)到最優(yōu)。從本質(zhì)上來說它是一個決策過程。同時,生產(chǎn)調(diào)度問題也是一類非常典型的組合優(yōu)化問題,當(dāng)中很多類型的子問題都是NP-hard問題。使用傳統(tǒng)的方法進(jìn)行求解很難得到令人滿意的結(jié)果,特別是對一些極為復(fù)雜的問題,甚至根本得不到有效的解。因此,無論在實(shí)際工業(yè)生產(chǎn)方面,還是在理論學(xué)術(shù)研究方面,對生產(chǎn)調(diào)度問題的研究都有著非常重要的意義。本文深入研究了四種典型的流水車間調(diào)度問題:帶阻塞流水車間調(diào)度問題、中間存儲有限流水車間調(diào)度問題、混合流水車間調(diào)度問題和機(jī)器故障情況下混合流水車間調(diào)度問題,建立了相應(yīng)的數(shù)學(xué)模型,提出了幾種群智能優(yōu)化算法并成功應(yīng)用到這些問題中。本文的主要研究成果如下: (1)針對帶阻塞流水車間調(diào)度問題(Blocking Flowshop Scheduling Problem, BFSP),提出了一種離散群搜索優(yōu)化算法(Discrete Group Search Optimizer, DGSO)用來最小化它的總流水時間。在DGSO算法中,種群初始化階段使用了隨機(jī)初始化與兩種啟發(fā)式算法(NEH和NEH-WPT)相結(jié)合的方法,保證了初始種群既具有一定的質(zhì)量,又兼?zhèn)涠鄻有裕唤又鴮⒒诓迦氩僮鞯泥徲蛩阉、離散差分進(jìn)化策略以及破壞重建過程嵌入到算法中,提高了算法的性能;最后使用了一種正交實(shí)驗(yàn)設(shè)計的方法選取了合適的算法參數(shù)值;跇(biāo)準(zhǔn)算例的大量仿真測試結(jié)果表明,提出的DGSO算法具有明顯的可行性和有效性。 (2)針對中間存儲有限流水車間調(diào)度問題(Flowshop Scheduling Problem with Limited Buffers, LBFSP),提出了一種混合離散和聲搜索算法(Hybrid Discrete Harmony Search, HDHS)對其進(jìn)行求解。此算法基于工件排列的編碼方式,設(shè)計了一種構(gòu)造離散和聲的新方法以及離散差分進(jìn)化策略;同時將此離散和聲搜索策略與基于插入操作的局部搜索操作相結(jié)合,很好地平衡了算法的全局搜索能力與局部搜索能力;并使用正交實(shí)驗(yàn)的方法確定HDHS算法的參數(shù)值;赥aillard標(biāo)準(zhǔn)算例的仿真實(shí)驗(yàn)表明提出的HDHS算法具有明顯的優(yōu)越性。 (3)針對混合流水車間調(diào)度問題(Hybrid Flowshop Scheduling, HFS),使用向量表述的方式進(jìn)行數(shù)學(xué)建模,并提出了一種改進(jìn)離散人工蜂群算法(Improved Discrete Artificial Bee Colony, IDABC)來最小化其最大完工時間makespan。IDABC算法在引領(lǐng)蜂和跟隨蜂階段分別使用了一種全新設(shè)計的差分進(jìn)化策略和改進(jìn)變鄰域搜索策略,實(shí)現(xiàn)了個體的更新;在偵察蜂階段使用破壞重建操作提高了算法的全局搜索能力。此外也使用了正交設(shè)計的方法,僅僅通過少量次數(shù)的實(shí)驗(yàn)就獲得了很好的算法參數(shù)值。大量的仿真實(shí)驗(yàn)表明,在求解相同的標(biāo)準(zhǔn)算例時,提出的IDABC算法的求解效果明顯優(yōu)于參與比較的當(dāng)前其他幾種高性能算法。 (4)在以往對生產(chǎn)調(diào)度問題的研究中,常常假設(shè)所有的機(jī)器一直可用,不會出現(xiàn)故障。然而在實(shí)際生產(chǎn)中,加工機(jī)器由于各種原因不可避免地會發(fā)生故障。針對機(jī)器發(fā)生故障情況下的混合流水車間調(diào)度問題(Hybrid Flowshop Scheduling with Random Breakdown, RBHFS),分析了機(jī)器發(fā)生故障后的兩種加工情況:preempt-resume情況和preempt-repeat'隋況,并提出了一種改進(jìn)離散群搜索優(yōu)化算法(Improved Discrete Group Search Optimizer, IDGSO)來求解。IDGSO算法采用向量表述方式來描述問題,并使用一些離散操作進(jìn)行迭代進(jìn)化,包括分布在發(fā)現(xiàn)者、追隨者和游蕩者階段中的插入操作、交換操作、差分進(jìn)化操作以及破壞重建操作等。仿真計算結(jié)果表明,在preempt-resume和preempt-repeat兩種情況下,提出的IDGSO算法比其他高性能算法具有更好的效果。
[Abstract]:Production scheduling problems exist in a large number of actual manufacturing and service industries, such as petrochemical industry, tobacco industry, textile industry, paper industry, pharmaceutical industry and food industry, and play a very important role in it. In simple terms, the problem of scheduling is how to allocate limited resources in a given time constraint, so that a Or multiple objectives are optimal. In essence, it is a decision-making process. At the same time, production scheduling problem is also a kind of very typical combinatorial optimization problem. Many of the types of sub problems are NP-hard problems. It is difficult to obtain satisfactory results by using traditional methods, especially for some extremely complex problems, The research on production scheduling problem is very important in both practical industrial production and theoretical academic research. Four typical flow shop scheduling problems are studied in this paper: the problem of traffic shop scheduling with blocking and the limited flow shop in the middle of this paper. Scheduling problem, mixed flow shop scheduling problem and hybrid flow shop scheduling problem under machine fault conditions, a corresponding mathematical model is established, and several swarm intelligence optimization algorithms are proposed and applied to these problems successfully. The main research results of this paper are as follows:
(1) a discrete group search optimization algorithm (Discrete Group Search Optimizer, DGSO) is proposed to minimize its total flow time for the Blocking Flowshop Scheduling Problem (BFSP). In the DGSO algorithm, the initialization phase of the population uses random initialization and two heuristic algorithms (NEH and heuristics). EH-WPT) the combination method ensures the quality and diversity of the initial population. Then, the neighborhood search, the discrete differential evolution strategy and the failure reconstruction process are embedded into the algorithm to improve the performance of the algorithm. Finally, an orthogonal experimental design method is used to select the appropriate calculation. A large number of simulation tests based on standard examples show that the proposed DGSO algorithm is feasible and effective.
(2) a new hybrid discrete harmonic search algorithm (Hybrid Discrete Harmony Search, HDHS) is proposed to solve the problem of Flowshop Scheduling Problem with Limited Buffers (LBFSP) in the middle storage. A new method for constructing discrete harmony is designed based on the coding method of the work-piece scheduling. As well as the discrete differential evolution strategy, combining the discrete harmony search strategy with the local search operation based on the insertion operation, the global search capability and the local search ability of the algorithm are well balanced. The parameter values of the HDHS algorithm are determined by the orthogonal experiment. The simulation experiments based on the Taillard standard example show that the algorithm is proposed. The HDHS algorithm has obvious superiority.
(3) for the mixed flow shop scheduling problem (Hybrid Flowshop Scheduling, HFS), a mathematical model is used by vector expression, and an improved discrete artificial bee colony algorithm (Improved Discrete Artificial Bee Colony, IDABC) is proposed to minimize the maximum completion time makespan.IDABC algorithm in the leading and following wasps stage. A new design of differential evolution strategy and an improved variable neighborhood search strategy are used respectively to update the individual and improve the global search ability of the algorithm in the reconnaissance bee stage. In addition, the orthogonal design method is used to obtain good algorithm parameters by only a small number of experiments. A large number of simulation experiments show that the proposed IDABC algorithm is better than the other high performance algorithms that participate in the comparison when solving the same standard example.
(4) in the previous research on production scheduling problems, it is often assumed that all machines are always available and will not fail. However, in actual production, processing machines will inevitably fail for a variety of reasons. Hybrid Flowshop Scheduling with Random Br Eakdown, RBHFS), analysis of the two processing conditions after the failure of the machine: the preempt-resume situation and the preempt-repeat'Sui state, and proposed an improved discrete group search optimization algorithm (Improved Discrete Group Search Optimizer, IDGSO) to solve the.IDGSO algorithm using vector expression to describe the problem, and use some discrete. The operation is iterative evolution, including the insertion operation in the discoverer, the followers and the wanderer stage, the switching operation, the differential evolution operation and the destruction reconstruction operation. The simulation results show that the proposed IDGSO algorithm has better effect than the other high performance algorithms in the two cases of preempt-resume and preempt-repeat.
【學(xué)位授予單位】:華東理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TB497;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁迪;謝里陽;隋天中;陶澤;;基于遺傳和禁忌搜索算法求解雙資源車間調(diào)度問題[J];東北大學(xué)學(xué)報;2006年08期
2 劉黎黎;王詩元;汪定偉;;求解交貨期可變動態(tài)調(diào)度問題的差分進(jìn)化算法[J];東北大學(xué)學(xué)報(自然科學(xué)版);2011年02期
3 田野;劉大有;;求解流水車間調(diào)度問題的混合粒子群算法[J];電子學(xué)報;2011年05期
4 高衛(wèi)峰;劉三陽;黃玲玲;;受啟發(fā)的人工蜂群算法在全局優(yōu)化問題中的應(yīng)用[J];電子學(xué)報;2012年12期
5 吳云高,王萬良;基于遺傳算法的混合Flowshop調(diào)度[J];計算機(jī)工程與應(yīng)用;2002年12期
6 黃志;黃文奇;;一種基于禁忌搜索的作業(yè)車間調(diào)度算法[J];計算機(jī)工程與應(yīng)用;2006年03期
7 趙良輝;鄧飛其;;解決Job Shop調(diào)度問題的模擬退火算法改進(jìn)[J];計算機(jī)工程;2006年21期
8 吳大為,陸濤棟,劉曉冰,孟永勝;求解作業(yè)車間調(diào)度問題的并行模擬退火算法[J];計算機(jī)集成制造系統(tǒng);2005年06期
9 王萬良;宋璐;徐新黎;吳啟迪;;含有混合中間存儲策略的模糊流水車間調(diào)度方法[J];計算機(jī)集成制造系統(tǒng);2006年12期
10 武磊;潘全科;桑紅燕;潘玉霞;;求解零空閑流水線調(diào)度問題的和聲搜索算法[J];計算機(jī)集成制造系統(tǒng);2009年10期
,本文編號:1820295
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1820295.html