液壓缸制動過程中能量回收系統(tǒng)的研究
發(fā)布時間:2018-04-26 10:48
本文選題:制動過程 + 動能回收。 參考:《太原理工大學》2017年碩士論文
【摘要】:工程機械中,如挖掘機、裝載機等常常由液壓缸驅(qū)動,這些液壓缸頻繁的啟動與制動,為了防止制動過程中的沖擊,液壓缸通常采用液壓制動閥進行制動。系統(tǒng)在制動時動能會以熱能的形式耗散在節(jié)流口上,從而導致油液的溫度升高,制動性能下降。特別對需頻繁制動的系統(tǒng)影響更大。采用液壓閥制動的同時會造成大量的能量損失,不利于節(jié)能。為了使執(zhí)行元件快速平穩(wěn)的制動,盡量減小緩沖腔的壓力沖擊,并把制動過程的能量進行回收再利用,國內(nèi)外學者做出了很多研究。如從提高發(fā)動機燃油效率、改進液壓系統(tǒng)結(jié)構(gòu)和優(yōu)化發(fā)動機-負載功率匹配控制策略等角度進行分析,但制動過程中能量損問題依舊存在。針對需頻繁啟動與制動的高速重載液壓系統(tǒng)存在的制動沖擊和能量損耗問題,首先對現(xiàn)有的制動系統(tǒng)進行歸納整理,結(jié)合負載敏感雙向制動回路的結(jié)構(gòu)特點及工作原理,提出一種以蓄能器為儲能元件,通過蓄能器壓力控制液壓變壓器中變量泵的排量,使負載達到平穩(wěn)制動和能量回收的系統(tǒng)。畫出原理圖,并結(jié)合數(shù)學模型闡述了系統(tǒng)的工作原理和控制方法。利用這種無節(jié)流損失的控制方式有效的降低了壓力沖擊和能量損耗。在滿足制動特性,同時兼顧能量回收效率的前提下,對制動回路中的主要元件蓄能器、液壓變壓器、切斷閥做出基本介紹,分析其工作原理和數(shù)學模型,并進行選型和參數(shù)的匹配,對切斷閥的結(jié)構(gòu)進行設計,畫出結(jié)構(gòu)原理圖,最后通過液壓變壓器、蓄能器、切斷閥相互配合,滿足系統(tǒng)的要求。給定工況的條件下,在AMESim軟件中對制動能量回收系統(tǒng)進行仿真,設置系統(tǒng)參數(shù),得到液壓缸制動腔及蓄能器壓力、變量泵排量變化、蓄能器體積等的仿真曲線圖,分析結(jié)果表明該系統(tǒng)能實現(xiàn)負載的快速平穩(wěn)制動并回收大部分動能。文中還討論了在不同負載質(zhì)量、不同初速度的情況下系統(tǒng)的制動特性和能量回收效率,研究結(jié)果表明,該系統(tǒng)對不同工況具有較強的適應能力。與負載敏感制動系統(tǒng)進行對比,充分證明了新型系統(tǒng)的在制動和能量回收方面的優(yōu)越性。指出影響系統(tǒng)的能量損失和能量回收效率的因素,主要包括機械摩擦損失、泄漏損失、粘性阻尼損失及控制過程中的損失等。對其進行分析計算,得到系統(tǒng)能量回收的總效率達63.24%。在通過對系統(tǒng)模型進行仿真,詳細分析和研究液壓變壓器排量、減速器的轉(zhuǎn)動慣量、蓄能器的初始壓力及體積、切斷閥的參數(shù)設置對制動能量回收系統(tǒng)的具體影響,對最終液壓元件參數(shù)的優(yōu)化和確定提供理論依據(jù)。
[Abstract]:In construction machinery, such as excavators, loaders and so on, often driven by hydraulic cylinders, these cylinders frequently start and brake, in order to prevent the impact of the braking process, hydraulic brake valves are usually used to brake the cylinder. The kinetic energy of the system will be dissipated on the throttle in the form of heat energy during braking, which will lead to the increase of oil temperature and the decrease of braking performance. Especially for the need for frequent braking system more impact. The use of hydraulic valve brake will cause a large amount of energy loss at the same time, which is not conducive to energy saving. In order to make the actuator brake quickly and smoothly, reduce the pressure shock of the buffer chamber as much as possible, and recycle the energy of the braking process, scholars at home and abroad have made a lot of research. For example, from the point of view of improving engine fuel efficiency, improving hydraulic system structure and optimizing the control strategy of engine load power matching, the energy loss problem still exists in the braking process. Aiming at the problems of braking shock and energy loss existing in high speed and heavy load hydraulic system which need to start and brake frequently, the existing braking system is summarized and sorted, and combined with the structural characteristics and working principle of load sensitive bidirectional braking circuit. A system is proposed in which the accumulator is used as the energy storage element and the displacement of the variable pump in the hydraulic transformer is controlled by the accumulator pressure, so that the load can achieve a steady braking and energy recovery. The working principle and control method of the system are described by drawing the schematic diagram and combining with the mathematical model. This control method with no throttling loss can effectively reduce the pressure shock and energy loss. On the premise of satisfying the braking characteristics and taking into account the efficiency of energy recovery, the main components of the brake circuit, accumulator, hydraulic transformer and cut-off valve, are introduced, and their working principle and mathematical model are analyzed. The structure of the cut-off valve is designed, and the schematic diagram is drawn. Finally, the hydraulic transformer, accumulator and cut-off valve cooperate with each other to meet the requirements of the system. Under given working conditions, the braking energy recovery system is simulated in AMESim software, and the system parameters are set up. The simulation curves of brake chamber and accumulator pressure, variable pump displacement, accumulator volume and so on are obtained. The analysis results show that the system can realize fast and steady braking of load and recover most of kinetic energy. The braking characteristics and energy recovery efficiency of the system under different load mass and different initial speed are also discussed. The results show that the system has strong adaptability to different working conditions. Compared with the load sensitive braking system, the advantages of the new system in braking and energy recovery are fully proved. It is pointed out that the factors affecting the energy loss and energy recovery efficiency of the system mainly include mechanical friction loss, leakage loss, viscous damping loss and loss in the control process. The total energy recovery efficiency of the system is 63.24. Through the simulation of the system model, the effects of hydraulic transformer displacement, the moment of inertia of reducer, the initial pressure and volume of accumulator, the parameter setting of cutting valve on the braking energy recovery system are analyzed and studied in detail. It provides a theoretical basis for the optimization and determination of the final hydraulic component parameters.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH137.51
【相似文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 奚旺;;源自賽道的能量回收系統(tǒng)[J];汽車知識;2012年05期
2 邵建橋;楊前明;;車輛能量回收系統(tǒng)的建模與仿真[J];流體傳動與控制;2010年03期
3 ;Question & Answer[J];世界汽車;2010年12期
4 萬里翔,柯堅,許明恒;汽車能量回收系統(tǒng)的研究[J];機床與液壓;2003年03期
5 梁海嶸;;商場空調(diào)新風、排風能量回收系統(tǒng)的應用分析[J];大眾科技;2009年10期
6 袁帥;戴石良;陳霞;潘永;;熱質(zhì)循環(huán)能量回收系統(tǒng)初步分析及應用[J];制冷空調(diào)與電力機械;2009年06期
7 喬利祥;井文鋒;;空氣源冷水(熱泵)機組幾種能量回收系統(tǒng)的探討[J];制冷與空調(diào);2008年S1期
8 程艷華;劉靖;;一種新型空調(diào)排風能量回收系統(tǒng)的理論分析與研究[J];建筑節(jié)能;2010年04期
9 盧海艷;唐軍;;基于超級電容的慣性能量回收系統(tǒng)的研究[J];現(xiàn)代機械;2013年05期
10 陳清林,華賁,王松平,尹清華;催化裂化再生煙氣能量回收系統(tǒng)的,
本文編號:1805736
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1805736.html
最近更新
教材專著