外嚙合齒輪泵嚙合載荷的數(shù)值模擬及動力學(xué)特性分析
本文選題:外嚙合齒輪泵 + 嚙合載荷; 參考:《合肥工業(yè)大學(xué)》2017年碩士論文
【摘要】:齒輪的嚙合載荷計算是關(guān)于一切齒輪系統(tǒng)研究的一項重要工作,是評估齒輪彎曲疲勞強度和接觸疲勞強度的重要指標。齒輪是外嚙合齒輪泵的核心零部件,因此齒輪的載荷計算是本文的主要工作。困油現(xiàn)象是齒輪泵的固有特性,齒輪泵的嚙合載荷的計算須要考慮困油現(xiàn)象,因此本文以齒輪泵的困油現(xiàn)象為前提,以嚙合載荷模型的建立和嚙合載荷的精確仿真為目標展開研究,主要開展了以下幾個方面的工作:采用公式創(chuàng)建法推導(dǎo)出齒輪泵困油面積的計算公式,并用計算機虛擬測量法驗證,為后續(xù)困油壓力和嚙合載荷的計算和仿真做好前期準備工作。結(jié)果表明,困油面積呈周期性變化并伴隨著突變。建立了考慮輪齒嚙合剛度和誤差的嚙合載荷的數(shù)學(xué)模型,以輪齒的變形量計算出輪齒的綜合嚙合剛度,呈現(xiàn)周期性變化的,并以實例計算出周期性變化的嚙合載荷,結(jié)果表明在一對齒輪嚙合時,嚙合載荷出現(xiàn)峰值;在兩對齒輪嚙合時,嚙合載荷較平穩(wěn)。建立了考慮困油壓力的嚙合載荷的數(shù)學(xué)模型,分析了困油壓力隨著位置變化對輪齒產(chǎn)生的阻力矩的變化。結(jié)果表明,油液對輪齒產(chǎn)生的阻力矩是周期性變化的,從輪齒進入嚙合開始到脫離嚙合位置結(jié)束。建立了嚙合載荷的仿真模型,并用數(shù)值模擬的方法對嚙合載荷進行求解,結(jié)果表明,不考慮困油壓力時,嚙合載荷呈周期性變化,每個周期內(nèi)有一個峰值,即一對齒輪嚙合時產(chǎn)生的載荷突變,與數(shù)學(xué)模型相符合。建立了齒輪泵外殼和齒輪副的模態(tài)分析有限元模型,仿真結(jié)果表明,齒輪泵外殼與齒輪副不會產(chǎn)生模態(tài)耦合。建立了齒輪泵內(nèi)部流場的流體動力學(xué)計算模型,并用數(shù)值模擬的方法對流體內(nèi)部的靜壓進行求解,結(jié)果表明,對于低壓定量齒輪泵,內(nèi)部靜壓變化不大,最大的靜壓力出現(xiàn)在齒輪的嚙合點附近,最小靜壓力出現(xiàn)在吸油腔附近,比較符合工程實際。本文的研究工作對外嚙合齒輪泵嚙合載荷的精確計算提供了一種科學(xué)的方法,在齒輪泵的結(jié)構(gòu)設(shè)計和噪聲控制方面具有重要意義,也為普通齒輪傳動載荷的計算提供了一種方法。
[Abstract]:The calculation of gear meshing load is an important work in the study of all gear systems and an important index to evaluate the bending fatigue strength and contact fatigue strength of gears. Gear is the core part of external gear pump, so the load calculation of gear is the main work in this paper. The phenomenon of oil trapping is the inherent characteristic of gear pump, and the meshing load of gear pump must be considered in the calculation of gear pump's meshing load, so this paper takes the phenomenon of gear pump's oil trap as the premise. Aiming at the establishment of meshing load model and the accurate simulation of meshing load, the main work of this paper is as follows: the formula for calculating the trapped area of gear pump is derived by formula creation method. The computer virtual measurement method is used to verify the preliminary preparation for the calculation and simulation of the trapping pressure and meshing load. The results showed that the area of trapped oil changed periodically and accompanied by mutation. A mathematical model of meshing load considering gear tooth meshing stiffness and error is established. The comprehensive meshing stiffness of gear tooth is calculated by the deformation of gear tooth, which presents periodic variation, and the periodic meshing load is calculated by an example. The results show that the meshing load is peak when a pair of gears is engaged, and the meshing load is stable when two pairs of gears are engaged. A mathematical model of meshing load considering the pressure of trapped oil was established, and the change of resistance moment of gear teeth caused by the change of pressure of trapped oil with the change of position was analyzed. The results show that the resistance moment of the oil to the gear teeth changes periodically from the beginning of the gear teeth into the meshing to the end of the disengagement position. The simulation model of meshing load is established, and the meshing load is solved by numerical simulation. The results show that the meshing load changes periodically without considering the trapped oil pressure, and there is a peak value in each cycle. That is, a pair of gears meshing the load of sudden change, consistent with the mathematical model. The modal analysis finite element model of gear pump casing and gear pair is established. The simulation results show that the gear pump housing and gear pair will not produce modal coupling. The hydrodynamic calculation model of the internal flow field of gear pump is established, and the hydrostatic pressure inside the fluid is solved by numerical simulation. The results show that the internal static pressure of the gear pump has little change for the low pressure quantitative gear pump. The maximum static pressure appears near the meshing point of the gear and the minimum static pressure near the oil suction chamber, which is more in line with the engineering practice. The research work in this paper provides a scientific method for the accurate calculation of the meshing load of external gear pump, which is of great significance in the structural design and noise control of gear pump. It also provides a method for calculating the load of common gear transmission.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TH137.51
【參考文獻】
相關(guān)期刊論文 前10條
1 黃鵬;;漸開線內(nèi)嚙合齒輪泵內(nèi)齒圈內(nèi)壁受液壓力的計算[J];液壓氣動與密封;2016年03期
2 高家赫;王巖松;趙禮輝;郭輝;李金國;;變排量外齒輪泵的內(nèi)流場仿真分析及卸荷槽優(yōu)化[J];機械傳動;2015年05期
3 邱鷂;陳國安;吳子軍;李東升;;外嚙合齒輪泵工作原理探究[J];液壓氣動與密封;2015年04期
4 趙韓;唐凱聰;黃康;孫迎波;沙發(fā)明;;基于Pro/E和ANSYS的擺線齒輪泵模態(tài)分析[J];機械傳動;2015年03期
5 曹錄海;任工昌;翁濤;;基于Workbench的齒輪泵輪齒有限元分析[J];機床與液壓;2015年01期
6 李紀強;劉忠明;;斜齒齒輪泵嚙合載荷計算方法[J];液壓與氣動;2014年11期
7 楊麗霞;謝東;田建濤;李曉輝;何義;;ANSYS軟件在齒輪泵靜力分析中的應(yīng)用[J];山東交通學(xué)院學(xué)報;2014年03期
8 徐長航;呂濤;陳國明;尹樹孟;;自升式平臺齒輪齒條升降機構(gòu)錯齒優(yōu)化動力學(xué)分析[J];機械工程學(xué)報;2014年19期
9 盧淑群;;多齒輪變量齒輪泵接觸力理論與仿真分析[J];液壓與氣動;2014年02期
10 李玉龍;;齒輪泵最大困油壓力解析式的建立與驗證[J];農(nóng)業(yè)工程學(xué)報;2013年11期
,本文編號:1791043
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1791043.html