面向灌區(qū)渠系輪廓提取的DEM處理方法研究
本文選題:灌區(qū)渠系輪廓 + 數(shù)字高程模型 ; 參考:《西北農(nóng)林科技大學(xué)》2017年碩士論文
【摘要】:灌區(qū)渠系的快速制圖對(duì)節(jié)水灌溉、合理配水以及安全輸水等具有重要意義。針對(duì)目前灌區(qū)渠系輪廓提取過程中存在的遙感影像識(shí)別率低、提取較難以及人工干預(yù)較多等問題,本文以無人機(jī)航空攝影測(cè)量獲得的正射影像、數(shù)字高程模型(Digital Elevation Model,DEM)和坡度數(shù)據(jù)為基礎(chǔ),分別采用了面向?qū)ο蠓诸惙椒、監(jiān)督分類方法、基于地形特征方法和改進(jìn)的霍夫變換方法分別實(shí)現(xiàn)渠系輪廓提取。由于坡度數(shù)據(jù)能夠減少灌區(qū)非渠系因素中道路以及農(nóng)地對(duì)渠系網(wǎng)絡(luò)的影響,使得渠系特征得到增強(qiáng),因此,與手動(dòng)數(shù)字化結(jié)果對(duì)比,改進(jìn)的霍夫變換方法在坡度數(shù)據(jù)上的提取完整度最高,優(yōu)于面向?qū)ο蠓诸惙、監(jiān)督分類法以及基于地形特征在多種數(shù)據(jù)上的渠系輪廓提取結(jié)果。該方法是對(duì)河套灌區(qū)渠系快速制圖方法的一次有效探索。主要研究?jī)?nèi)容及結(jié)果如下:(1)設(shè)計(jì)并實(shí)現(xiàn)了基于地形特征的渠系輪廓提取方法。首先將灌區(qū)中的公路、湖泊及房屋等干擾因素作預(yù)處理,進(jìn)行過濾,并對(duì)DEM進(jìn)行坡度轉(zhuǎn)換,消除幾乎無坡度變化的田間道路數(shù)據(jù);其次通過對(duì)數(shù)據(jù)集進(jìn)行測(cè)試,查找區(qū)分渠系與非渠系信息的最優(yōu)閾值,得到區(qū)域分割結(jié)果;最后根據(jù)實(shí)地勘察過程中的采樣點(diǎn)信息,按照廣度優(yōu)先搜索方式進(jìn)行渠系輪廓信息的搜尋及保存。經(jīng)證明,基于地形特征的渠系輪廓提取方法完整度為66.95%,高于面向?qū)ο蠓椒ㄔ诙喾N數(shù)據(jù)上的渠系輪廓提取結(jié)果,低于監(jiān)督分類方法在多種數(shù)據(jù)上的渠系輪廓提取結(jié)果,錯(cuò)誤率最低,僅為34.72%。(2)設(shè)計(jì)并實(shí)現(xiàn)了改進(jìn)霍夫變換的渠系輪廓提取方法。在灌區(qū)中,渠系和田間農(nóng)地、道路具有規(guī)整及統(tǒng)一的線性結(jié)構(gòu),而田間農(nóng)地和道路基本無坡度變化,因此坡度轉(zhuǎn)化過程能夠剔除掉與渠系具有相似分布的道路和農(nóng)地信息。本研究以坡度數(shù)據(jù)為基礎(chǔ),采用灰度化、濾波去噪、二值化以及連通區(qū)域干擾點(diǎn)去除等步驟,結(jié)合基本霍夫變換能夠在較多噪聲環(huán)境下提取直線段的特點(diǎn),實(shí)現(xiàn)了對(duì)灌區(qū)渠系輪廓的獲取,并對(duì)結(jié)果中出現(xiàn)的渠系斷開以及相交問題使用幾何方法進(jìn)行有效改進(jìn)。經(jīng)證明,改進(jìn)霍夫變換的渠系輪廓提取完整度最高,可達(dá)到85.61%,比面向?qū)ο蠓诸惙ㄆ露冉Y(jié)果高出26.91%,比該方法的錯(cuò)誤率低47.33%;比監(jiān)督分類方法坡度結(jié)果高出3.77%,但是錯(cuò)誤率低23.34%。
[Abstract]:Rapid mapping of canal system in irrigation area is of great significance to water saving irrigation, reasonable water distribution and safe water transportation.Aiming at the problems of low recognition rate, difficult extraction and more manual intervention in the process of contour extraction of canal system in irrigation area, the orthophoto image obtained by aerial photogrammetry of UAV is used in this paper.Based on the digital elevation model (DSM) and slope data, object oriented classification method, supervised classification method, terrain feature method and improved Hough transform method are used to extract canal system contour, respectively.Because slope data can reduce the influence of road and farmland on canal system network in irrigation area, the characteristics of canal system are enhanced, so compared with manual digitization results, the slope data can reduce the influence of road and farmland on canal system network.The improved Hough transform method has the highest extraction integrity on slope data, which is superior to the object-oriented classification method, the supervised classification method and the contour extraction results of canal system based on terrain features on a variety of data.This method is an effective exploration for rapid mapping of canal system in Hetao irrigation area.The main research contents and results are as follows: (1) the method of canal system contour extraction based on terrain feature is designed and implemented.Firstly, the disturbance factors such as roads, lakes and houses in irrigated area are pretreated, filtered, and the slope degree of DEM is converted to eliminate the field road data with almost no slope change; secondly, the data set is tested.Find the optimal threshold to distinguish the canal system information from the non-canal system information and get the region segmentation result. Finally according to the sampling point information in the field survey the contour information of canal system is searched and preserved according to the breadth-first search method.It has been proved that the integrity degree of canal system contour extraction method based on terrain feature is 66.95, which is higher than that of object-oriented method on many kinds of data, and lower than that of supervised classification method on many kinds of data.The error rate is the lowest, only 34.72%.) the improved Hough transform is designed and implemented to extract the contour of canal system.In irrigation area, the road has a regular and uniform linear structure in canal system and field farmland, but there is no slope change in field farmland and road, so the information of road and farmland with similar distribution can be eliminated in the process of slope transformation.Based on the slope data, this study adopts the steps of grayscale, filtering and denoising, binarization and the removal of interference points in the connected region, combining with the characteristics of the basic Hough transform to extract the straight line segment in the environment of more noise.The contour of canal system in irrigation area is obtained, and the geometric method is used to improve the problem of disconnection and intersection of canal system in the result.It has been proved that the improved Hough transform has the highest degree of integrity of canal system contour extraction, which can reach 85.61, 26.91 higher than the result of object-oriented classification, 47.33 lower than the error rate of this method, and 3.77 higher than that of supervised classification method, but the error rate is 23.34 points lower.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S27;TP79
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓文霆;張立元;張海鑫;師志強(qiáng);苑夢(mèng)嬋;王紫軍;;基于無人機(jī)遙感與面向?qū)ο蠓ǖ奶镩g渠系分布信息提取[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2017年03期
2 汪洋;許映秋;彭艷兵;;基于KNN技術(shù)的校內(nèi)網(wǎng)驗(yàn)證碼識(shí)別[J];計(jì)算機(jī)與現(xiàn)代化;2017年02期
3 周愛霞;余莉;馮徑;張雪艷;;基于面向?qū)ο蠓椒ǖ母叻直媛蔬b感影像道路提取方法研究[J];測(cè)繪與空間地理信息;2017年02期
4 袁欣智;江洪;陳蕓芝;汪小欽;;一種應(yīng)用大津法的自適應(yīng)閾值水體提取方法[J];遙感信息;2016年05期
5 王建華;秦其明;高中靈;葉昕;孟晉杰;;加入空間紋理信息的遙感圖像道路提取[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年04期
6 李美玲;付慧;王曉晶;張金金;;高分辨率遙感影像道路提取[J];遙感信息;2016年02期
7 劉凱;湯國安;黃驍力;蔣圣;;面向地形特征的DEM與影像紋理差異分析[J];地球信息科學(xué)學(xué)報(bào);2016年03期
8 方文;李朝奎;梁繼;胡q豪;;多分類器組合的遙感影像分類方法[J];測(cè)繪科學(xué);2016年10期
9 王玉著;劉修國;張唯;;并行化多流向策略的柵格河網(wǎng)提取算法[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2015年12期
10 李勇志;支曉棟;唐海龍;李丹;趙政;孫長(zhǎng)奎;;無人機(jī)遙感技術(shù)在農(nóng)業(yè)中的發(fā)展與應(yīng)用[J];安徽農(nóng)業(yè)科學(xué);2015年25期
相關(guān)博士學(xué)位論文 前1條
1 俞偉斌;基于DEM的數(shù)字流域時(shí)空特征及提取研究[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前4條
1 張海鑫;基于無人機(jī)遙感的渠系分布信息提取方法研究[D];西北農(nóng)林科技大學(xué);2016年
2 張明杰;基于航空影像的平坦區(qū)田埂界線識(shí)別與提取研究[D];中國礦業(yè)大學(xué);2015年
3 易珍言;遙感技術(shù)在灌溉管理中的應(yīng)用研究[D];蘭州交通大學(xué);2014年
4 張玲艷;基于Canny理論的自適應(yīng)邊緣檢測(cè)方法研究[D];西北大學(xué);2009年
,本文編號(hào):1773255
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1773255.html