耦合化學(xué)反應(yīng)的多孔介質(zhì)內(nèi)熱質(zhì)傳遞機(jī)理研究
本文選題:多孔介質(zhì) 切入點(diǎn):熱質(zhì)傳遞 出處:《中國(guó)科學(xué)院工程熱物理研究所》2017年博士論文 論文類型:學(xué)位論文
【摘要】:催化反應(yīng),例如催化燃燒、催化重整、催化裂解、催化加氫及催化部分氧化等,是能源化工領(lǐng)域最重要的反應(yīng)類型之一,其在工業(yè)生產(chǎn)中具有廣泛的應(yīng)用。大部分催化反應(yīng)過程中,反應(yīng)物的轉(zhuǎn)化都同時(shí)包含了復(fù)雜的熱質(zhì)傳遞過程。目前,催化吸/放熱反應(yīng)主要利用固定床反應(yīng)器實(shí)現(xiàn)。該反應(yīng)器內(nèi)存在不同尺度的流動(dòng)、熱質(zhì)傳遞及化學(xué)反應(yīng)過程,而且它們之間存在復(fù)雜的耦合作用。其內(nèi)流動(dòng)、熱質(zhì)傳遞及它們與化學(xué)反應(yīng)的耦合協(xié)同特性會(huì)隨多孔介質(zhì)的形態(tài)結(jié)構(gòu)、材料及化學(xué)反應(yīng)類型發(fā)生較大的變化。這些因素對(duì)反應(yīng)器運(yùn)行所需泵功、反應(yīng)器內(nèi)反應(yīng)效率及熱效率具有決定性的影響。因此,獲得特定多孔結(jié)構(gòu)的結(jié)構(gòu)、流動(dòng)與熱質(zhì)傳遞特性,并確定適合特定化學(xué)反應(yīng)類型的最佳多孔結(jié)構(gòu),以在盡可能小的泵功下,使熱質(zhì)傳遞與化學(xué)反應(yīng)協(xié)同性最好,達(dá)到最優(yōu)的物質(zhì)轉(zhuǎn)化率與能源利用率具有重要的意義。本課題緊緊圍繞能量熱化學(xué)利用中的復(fù)雜熱質(zhì)傳遞過程,對(duì)耦合化學(xué)反應(yīng)的多孔介質(zhì)內(nèi)熱質(zhì)傳遞機(jī)理進(jìn)行系統(tǒng)的研究,解析微納尺度與大孔尺度多孔介質(zhì)內(nèi)熱質(zhì)傳遞規(guī)律,深入剖析熱質(zhì)傳遞與化學(xué)反應(yīng)的耦合協(xié)同性,獲得特定多孔結(jié)構(gòu)內(nèi)的流動(dòng)與熱質(zhì)傳遞特性,綜合評(píng)價(jià)比較不同多孔結(jié)構(gòu)內(nèi)的流動(dòng)及熱質(zhì)傳遞特性,明確指出不同多孔結(jié)構(gòu)的適用范圍,以期為多孔介質(zhì)傳熱傳質(zhì)學(xué)的發(fā)展以及能源的熱化學(xué)利用做出一定的貢獻(xiàn)。首先基于離散單元法(DEM)-計(jì)算流體力學(xué)(CFD)對(duì)傳統(tǒng)顆粒填充床內(nèi)的流動(dòng)、熱質(zhì)傳遞與化學(xué)反應(yīng)等物理現(xiàn)象及它們之間的耦合協(xié)同性進(jìn)行了系統(tǒng)的三維研究。著重對(duì)床層內(nèi)的兩個(gè)協(xié)同進(jìn)行了分析,一個(gè)是床層內(nèi)顆粒間流動(dòng)與傳熱的場(chǎng)協(xié)同分析,另一個(gè)是催化劑顆粒內(nèi)熱質(zhì)傳遞與化學(xué)反應(yīng)的協(xié)同分析。揭示了低圓管-顆粒直徑比下局部孔隙率、局部顆粒-流體傳熱系數(shù)和局部壁面-流體傳熱系數(shù)沿床層的振蕩性分布,并利用場(chǎng)協(xié)同原理對(duì)流場(chǎng)與溫度場(chǎng)進(jìn)行了分析,提出了壁面-流體傳熱強(qiáng)化的填充結(jié)構(gòu)。以用于化學(xué)熱泵的丙酮加氫為例,對(duì)顆粒填充床內(nèi)耦合化學(xué)反應(yīng)的熱質(zhì)傳遞過程亦進(jìn)行了三維CFD數(shù)值模擬,對(duì)床層內(nèi)與催化劑顆粒內(nèi)的傳熱傳質(zhì)阻力進(jìn)行了分析,獲得傳熱傳質(zhì)阻力最大處,從而指導(dǎo)多孔填充床反應(yīng)器內(nèi)熱質(zhì)傳遞的強(qiáng)化。通過調(diào)控催化劑顆粒結(jié)構(gòu)參數(shù)(顆粒大小、孔隙率及孔尺寸),研究了催化劑顆粒結(jié)構(gòu)對(duì)丙酮轉(zhuǎn)化率及異丙醇選擇性的影響規(guī)律,為丙酮加氫反應(yīng)催化劑顆粒的設(shè)計(jì)提供了指導(dǎo),并建立了氣相催化反應(yīng)CFD模擬研究的一般性方法。其次通過數(shù)值模擬與實(shí)驗(yàn)的方法對(duì)泡沫金屬反應(yīng)器內(nèi)涂層泡沫金屬的流動(dòng)傳熱特性進(jìn)行了系統(tǒng)的研究,揭示了涂層對(duì)泡沫金屬有效導(dǎo)熱、氣固傳熱及輻射傳熱特性的影響規(guī)律。首先成功構(gòu)建涂層泡沫金屬單元胞的結(jié)構(gòu),并獲得表征其結(jié)構(gòu)的相關(guān)參數(shù),利用CFD對(duì)不同結(jié)構(gòu)參數(shù)、不同基質(zhì)及不同涂層材料下涂層泡沫金屬的純導(dǎo)熱引起的有效導(dǎo)熱進(jìn)行了模擬,獲得了催化劑涂層對(duì)泡沫金屬有效導(dǎo)熱的影響規(guī)律,建立了涂層泡沫金屬的純導(dǎo)熱引起的有效導(dǎo)熱系數(shù)的關(guān)聯(lián)式;然后,對(duì)涂層泡沫金屬內(nèi)的流動(dòng)及氣固傳熱進(jìn)行了 CFD模擬,研究得到催化劑涂層對(duì)泡沫金屬流動(dòng)壓降及氣固傳熱的影響規(guī)律,驗(yàn)證了涂層內(nèi)努森流動(dòng)的出現(xiàn)對(duì)氣固傳熱的強(qiáng)化作用;最后,對(duì)泡沫金屬及涂層泡沫金屬內(nèi)的輻射傳熱特性進(jìn)行了實(shí)驗(yàn)研究,獲得了泡沫金屬內(nèi)輻射傳熱特性及催化劑涂層特性對(duì)泡沫金屬內(nèi)輻射傳熱特性的影響規(guī)律,得到了涂層泡沫金屬的概念性有效輻射導(dǎo)熱系數(shù)。然后以振蕩流回?zé)崞鳛槔?對(duì)多種填充結(jié)構(gòu)的結(jié)構(gòu)、流動(dòng)及傳熱性能進(jìn)行了評(píng)價(jià),綜合比較了各種填充結(jié)構(gòu)的優(yōu)劣。建立了適用于不同填充結(jié)構(gòu)(顆粒、絲網(wǎng)及泡沫)振蕩流回?zé)崞鞯牧鲃?dòng)傳熱綜合控制模型,然后將不同填充結(jié)構(gòu)的特性參數(shù)引入流動(dòng)傳熱綜合模型中,采用C語言編程利用有限差分法對(duì)振蕩流回?zé)崞鞯幕責(zé)徇^程進(jìn)行了模擬,獲得了不同填充結(jié)構(gòu)的結(jié)構(gòu)特性,得到了不同填充結(jié)構(gòu)振蕩流回?zé)崞鞯膿Q熱效率與綜合性能,明確指出各自流動(dòng)與熱質(zhì)傳遞的優(yōu)勢(shì)與缺陷,即制約不同填充結(jié)構(gòu)傳熱效率的因素,獲得了各種填充結(jié)構(gòu)的普遍性規(guī)律。最后建立了傳統(tǒng)顆粒填充反應(yīng)器與新型泡沫金屬反應(yīng)器的一維兩相反應(yīng)器模型,并采用C語言利用有限體積法實(shí)現(xiàn)了模擬。泡沫金屬反應(yīng)器的反應(yīng)器模型考慮了涂層厚度及涂層對(duì)反應(yīng)器內(nèi)傳熱特性的影響。以丙酮加氫慢速反應(yīng)為例,對(duì)傳統(tǒng)顆粒填充反應(yīng)器與新型泡沫金屬反應(yīng)器進(jìn)行了模擬比較。驗(yàn)證了這兩種反應(yīng)器用于慢速反應(yīng)時(shí)的優(yōu)劣,并對(duì)這兩種結(jié)構(gòu)的結(jié)構(gòu)、流動(dòng)及熱質(zhì)傳遞與化學(xué)反應(yīng)的協(xié)同特性進(jìn)行了進(jìn)一步的綜合研究。
[Abstract]:For example, catalytic reaction, catalytic combustion, catalytic reforming, catalytic cracking, catalytic hydrogenation and catalytic partial oxidation reaction, is one of the most important types of energy chemical industry, has been widely used in industrial production. Most of the catalytic reaction process, conversion of the reactants are also contains complicated processes of heat and mass transfer. At present, the catalytic endothermic and exothermic reactions using fixed bed reactor. The existence of different scale flow reactor, heat transfer and chemical reaction process, and the existence of the complex coupling between them. The flow, heat and mass transfer and their coupling with chemical reaction with synergistic properties of porous media structure the material and the type of chemical reaction change greatly. These factors of pump power required for the reactor operation, has a decisive influence on the reaction efficiency and thermal efficiency of the reactor. Because of this, get special Fixed structure of porous structure, flow and heat transfer characteristics, and to determine the optimal porous structure suitable for a particular type of chemical reaction, the pump power in as little as possible, transfer and chemical reaction, the best synergy to heat, has the vital significance and the utilization rate of energy conversion to achieve the optimal material. This topic closely around the complex heat and mass transfer in the process of using chemical energy, heat and mass transfer mechanism of porous media on the coupling chemical reaction system research, analysis of micro nano scale and large pore scale porous medium heat and mass transfer law, in-depth analysis of heat and mass transfer and chemical reaction coupling synergy, flow and the heat and mass transfer characteristics for specific the porous structure of the comprehensive evaluation, comparison of different flow and heat transfer characteristics of the porous structure, clearly pointed out that the application scope of different porous structure, with a view to the heat and mass transfer in porous medium Make a contribution to the development and utilization of energy chemical. Firstly, based on discrete element method (DEM) and computational fluid dynamics (CFD) to the traditional pellet packed bed flow, heat and mass of 3D collaborative research system transfer coupling between chemical reaction and physical phenomena and their focus on the bed. The two coordinate is analyzed, a synergy analysis of flow and heat transfer of particles in the bed between the field and the other is a collaborative analysis of heat and mass transfer reaction of catalyst particles and chemical. Revealing a low tube particle diameter than the local porosity, the local particle fluid heat transfer coefficient and local wall surface the fluid heat transfer coefficient along the bed oscillatory distribution, and using the field synergy principle of convection field and temperature field are analyzed, put forward to strengthen the heat transfer fluid filled structure wall. For the hydrogenation of acetone chemical heat pump as an example, on a The particle packed bed heat transfer process coupled with chemical reaction were also discussed in three dimensional CFD numerical simulation of heat transfer, mass transfer resistance inside the bed and catalyst particles were analyzed, obtained the maximum heat transfer resistance, so as to guide the porous packed bed reactor with strong heat and mass transfer. By adjusting the structure parameters of catalyst particles (particle size, porosity and pore size), studied the influence of catalyst particle structure conversion and selectivity to acetone and isopropanol, provides guidance for the design of acetone hydrogenation catalyst particles, and a general method for simulation of gas phase catalytic reaction of CFD. The second was studied by numerical simulation method with the experiment on the flow and heat transfer characteristics of metal foam coating of metal foam inside the reactor, reveals the effective thermal conductivity of metal foam coating, gas-solid heat transfer and radiation heat transfer characteristics The influence of structure. First coating metal foam cell was successfully constructed, and get the parameters of the structure, of the different structure parameters by using CFD, the effective thermal conduction of different substrates and different coating materials under the coating of metal foam by simulation, obtaining the effect of catalyst coating on the effective thermal conductivity of metal foam that association has established a pure thermal conductive coating of metal foam effective thermal conductivity caused by the flow of the coating; then, metal foam and the gas-solid heat transfer was simulated by CFD simulation, study effects of flow pressure drop and gas catalyst coating on the metal foam heat transfer, verify the flow of Neinusen appear. The gas-solid heat transfer the strengthening effect; finally, radiation heat transfer characteristics of metal foam and coating in metal foams was studied, obtained the radiation heat transfer in metal foams Effect of regularity and characteristics of the catalyst coating of metal foam radiative heat transfer characteristics of the obtained coating concept of metal foam thermal conductivity. Then the effective radiation heat exchanger to oscillation as an example, the structure of a variety of filling, flow and heat transfer properties were evaluated, comprehensive comparison of various filling structures is established. Suitable for different filling structure (particles, mesh and foam) comprehensive control model of oscillating flow heat transfer back to the heat exchanger, and then the characteristic parameters of different filling structure into the flow and heat transfer model, using C language programming by using the finite difference method of oscillation flow heat exchanger heat recovery process was simulated and obtained different structure the structural characteristics of the filling, thermal efficiency and performance for different filling structure to oscillation heat exchanger, pointed out their advantages and disadvantages and the flow of heat and mass transfer, i.e. Different factors restricting the filling structure of heat transfer efficiency, was filled with various common law structure. Finally, a one-dimensional two-phase reactor model of reactor and reactor model of metal foam filled with traditional particle, and using C language to realize the simulation by using finite volume method. The reactor model of foam metal reactor is considered the thickness of the coating and coating on the heat transfer characteristics of the reactor. The hydrogenation of acetone to slow reaction as an example, the traditional particle reactor filled with new foam metal reactor was studied. The two kinds of reactors for slow reaction when the pros and cons of verification, and the two kinds of structure, collaborative response flow and heat transfer and chemical studied further.
【學(xué)位授予單位】:中國(guó)科學(xué)院工程熱物理研究所
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ021
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 谷岳;泡沫金屬[J];汽車工藝與材料;2000年09期
2 耀星;粉末冶金泡沫金屬應(yīng)用前景看好[J];粉末冶金工業(yè);2001年01期
3 王錄才,于利民,王芳,李秀山;多孔泡沫金屬的研究及其前景展望[J];太原重型機(jī)械學(xué)院學(xué)報(bào);2002年01期
4 陳學(xué)廣,趙維民,馬彥東,胡愛文;泡沫金屬的發(fā)展現(xiàn)狀、研究與應(yīng)用[J];粉末冶金技術(shù);2002年06期
5 于英華,梁冰,李智超;多孔泡沫金屬研究現(xiàn)狀及分析[J];青島建筑工程學(xué)院學(xué)報(bào);2003年01期
6 左孝青,孫加林;泡沫金屬制備技術(shù)研究進(jìn)展[J];材料科學(xué)與工程學(xué)報(bào);2004年03期
7 劉亞俊,趙生權(quán),劉崴,陳平,湯勇;泡沫金屬制備方法及其研究概況[J];現(xiàn)代制造工程;2004年09期
8 陳文革,張強(qiáng);泡沫金屬的特點(diǎn)、應(yīng)用、制備與發(fā)展[J];粉末冶金工業(yè);2005年02期
9 史承明;王曉明;張陵;;泡沫金屬及其在建筑工程中的應(yīng)用[J];陜西理工學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年02期
10 李湘洲;;新型泡沫金屬一瞥[J];金屬世界;2007年01期
相關(guān)會(huì)議論文 前10條
1 楊思一;呂廣庶;;具有規(guī)則孔型的泡沫金屬結(jié)構(gòu)設(shè)計(jì)與制造方法研究[A];2004年中國(guó)材料研討會(huì)論文摘要集[C];2004年
2 柳暢;陳常青;沈亞鵬;;小泡沫金屬壓痕試驗(yàn)的數(shù)值模擬及其反演[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
3 陳振乾;施明恒;;泡沫金屬內(nèi)流體凍結(jié)相變的傳熱過程[A];第四屆全國(guó)制冷空調(diào)新技術(shù)研討會(huì)論文集[C];2006年
4 宋紹峰;姜培學(xué);;泡沫金屬與針翅結(jié)構(gòu)換熱器的實(shí)驗(yàn)研究[A];2007年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2007年
5 鄭志軍;虞吉林;;泡沫金屬的動(dòng)態(tài)壓潰:沖擊壓縮、多尺度模擬和率敏感性[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
6 蔣家橋;黃西成;胡時(shí)勝;;泡沫金屬緩沖器的設(shè)計(jì)新方法及應(yīng)用[A];中國(guó)工程物理研究院科技年報(bào)(2003)[C];2003年
7 李劍榮;寇東鵬;虞吉林;;具有雙重尺寸孔結(jié)構(gòu)的開孔泡沫金屬的優(yōu)化設(shè)計(jì)[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
8 穆林;韓瑤;張建;趙桂平;盧天健;;基于分形理論的泡沫金屬材料力學(xué)細(xì)觀結(jié)構(gòu)分析[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
9 高建成;劉趙淼;;泡沫金屬的力學(xué)性能研究進(jìn)展[A];北京力學(xué)會(huì)第13屆學(xué)術(shù)年會(huì)論文集[C];2007年
10 楊秀;陳振乾;施明恒;;泡沫金屬內(nèi)流體凍結(jié)相變傳熱過程的研究[A];中國(guó)制冷學(xué)會(huì)2007學(xué)術(shù)年會(huì)論文集[C];2007年
相關(guān)重要報(bào)紙文章 前4條
1 張譯中;金屬泡沫材料研究進(jìn)展[N];世界金屬導(dǎo)報(bào);2002年
2 中航工業(yè)制造所 侯紅亮;新型輕量化功能與結(jié)構(gòu)材料——泡沫金屬及其三明治結(jié)構(gòu)[N];中國(guó)航空?qǐng)?bào);2014年
3 石發(fā)清;制備泡末鋁工藝的研究[N];中國(guó)有色金屬報(bào);2005年
4 李有觀;制造泡沫鋁合金材料的新技術(shù)[N];中國(guó)有色金屬報(bào);2005年
相關(guān)博士學(xué)位論文 前10條
1 張曉陽;多軸條件下基于細(xì)觀結(jié)構(gòu)模型的泡沫金屬屈服與破壞行為研究[D];華南理工大學(xué);2016年
2 施娟;泡沫金屬?gòu)?qiáng)化沸騰傳熱過程的研究[D];東南大學(xué);2015年
3 彭文平;耦合化學(xué)反應(yīng)的多孔介質(zhì)內(nèi)熱質(zhì)傳遞機(jī)理研究[D];中國(guó)科學(xué)院工程熱物理研究所;2017年
4 王長(zhǎng)峰;泡沫金屬的動(dòng)態(tài)壓潰模型和率敏感性分析[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
5 李科;泡沫金屬發(fā)泡過程的泡沫演化動(dòng)力學(xué)研究[D];大連理工大學(xué);2009年
6 韓春光;拉伸條件下泡沫金屬的細(xì)觀統(tǒng)計(jì)分析模型及統(tǒng)計(jì)特性研究[D];華南理工大學(xué);2011年
7 羅彥茹;泡沫SiC_p/ZL104復(fù)合材料的制備及性能研究[D];吉林大學(xué);2007年
8 周志偉;泡沫鋁合金與芳綸紙蜂窩的屈服行為研究[D];太原理工大學(xué);2013年
9 寇東鵬;細(xì)觀結(jié)構(gòu)對(duì)多孔金屬材料力學(xué)性能的影響及多目標(biāo)優(yōu)化設(shè)計(jì)[D];中國(guó)科學(xué)技術(shù)大學(xué);2008年
10 劉家安;陶瓷/ZA22復(fù)合泡沫的制備及性能研究[D];吉林大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 黃媛媛;開孔泡沫金屬微結(jié)構(gòu)強(qiáng)化傳熱性能的數(shù)值模擬研究[D];華東理工大學(xué);2015年
2 楊皓;純鋁泡沫的真空發(fā)泡制備與力學(xué)性能研究[D];昆明理工大學(xué);2015年
3 高曉莉;泡沫金屬磁流變液阻尼器的優(yōu)化設(shè)計(jì)及性能研究[D];上海應(yīng)用技術(shù)學(xué)院;2015年
4 張學(xué)麗;吸聲降噪密胺泡沫的制備與表征[D];北京化工大學(xué);2015年
5 王江龍;沖擊載荷作用下梯度泡沫的壓縮特性分析[D];太原理工大學(xué);2016年
6 封偉民;泡沫鎂材料的制備與性能研究[D];哈爾濱工業(yè)大學(xué);2016年
7 牛玲;緊湊式換熱器優(yōu)化設(shè)計(jì)及其相變傳熱研究[D];鄭州大學(xué);2016年
8 郭坤山;泡沫鋼的制備與組織性能研究[D];昆明理工大學(xué);2016年
9 李朝劍;空心微球結(jié)構(gòu)泡沫金的光電特性研究[D];云南大學(xué);2016年
10 孫猛;泡沫金屬磁流變液阻尼器的半主動(dòng)控制特性研究[D];上海應(yīng)用技術(shù)大學(xué);2016年
,本文編號(hào):1634781
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1634781.html