天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 工程管理論文 >

基于K-Means的遙感圖像分類及其傳輸系統(tǒng)的研究

發(fā)布時(shí)間:2018-03-17 07:46

  本文選題:無(wú)線網(wǎng)絡(luò)傳輸系統(tǒng) 切入點(diǎn):小波變換 出處:《北京郵電大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:為了保證信息可以不受限于網(wǎng)絡(luò)、信號(hào)、安全等因素進(jìn)行快速傳輸,我們與軍方合作,設(shè)計(jì)并開(kāi)發(fā)了一套無(wú)線網(wǎng)絡(luò)傳輸系統(tǒng)。這套系統(tǒng)通過(guò)FPGA射頻信號(hào)傳輸加密后的信息,不會(huì)受到網(wǎng)絡(luò)、信號(hào)、安全等因素的干擾,不僅可以進(jìn)行正常通信,還可以用來(lái)進(jìn)行野外救援、作戰(zhàn)指揮等。當(dāng)前系統(tǒng)主要由業(yè)務(wù)平臺(tái)和無(wú)線平臺(tái)兩個(gè)部分組成。基于這個(gè)無(wú)線網(wǎng)絡(luò)傳輸系統(tǒng),本文研究了遙感圖像去噪過(guò)程和遙感圖像分類過(guò)程,將分類后的遙感圖像通過(guò)本系統(tǒng)進(jìn)行傳輸,實(shí)現(xiàn)了遙感圖像分類傳輸系統(tǒng)。本文的主要研究?jī)?nèi)容包括以下四個(gè)方面:1)無(wú)線網(wǎng)絡(luò)傳輸系統(tǒng)中業(yè)務(wù)平臺(tái)的設(shè)計(jì)與實(shí)現(xiàn),無(wú)線平臺(tái)和業(yè)務(wù)平臺(tái)間的通信協(xié)議SWIP協(xié)議的設(shè)計(jì),無(wú)線平臺(tái)之間信息傳輸?shù)膶?shí)現(xiàn)與傳輸過(guò)程的說(shuō)明。2)遙感圖像包含的噪聲類型分析,針對(duì)遙感圖像中包含的噪聲類型,選取了中值濾波和小波閾值去噪法進(jìn)行去噪處理,分析了傳統(tǒng)小波閾值去噪法存在的不足,提出了一種雙閾值小波閾值去噪函數(shù)。3)分析并比較常用的圖像分類算法,選取K均值聚類算法對(duì)遙感圖像進(jìn)行分類,針對(duì)傳統(tǒng)K均值聚類算法在遙感圖像分類過(guò)程中存在的問(wèn)題,提出了一種自適應(yīng)確定分類數(shù)并優(yōu)化初始聚類中心的K均值聚類算法。4)無(wú)線網(wǎng)絡(luò)傳輸系統(tǒng)應(yīng)用于遙感圖像分類中,實(shí)現(xiàn)了遙感圖像分類傳輸系統(tǒng)。本文通過(guò)Matlab仿真實(shí)驗(yàn),將峰值信噪比作為圖像去噪效果的客觀評(píng)價(jià)標(biāo)準(zhǔn),對(duì)比了傳統(tǒng)小波闞值去噪算法與改進(jìn)的小波閾值去噪算法的去噪效果,實(shí)驗(yàn)表明改進(jìn)的小波閾值去噪法對(duì)遙感圖像去噪效果更佳。同樣的,通過(guò)對(duì)比實(shí)驗(yàn)發(fā)現(xiàn),改進(jìn)的K均值聚類算法對(duì)遙感圖像的分類效果更佳。
[Abstract]:In order to ensure that the information can be transmitted quickly without limiting the network, signal, security and other factors, we have designed and developed a wireless network transmission system in cooperation with the military. This system transmits encrypted information through FPGA radio frequency signal. Without interference from network, signal, security and other factors, not only can normal communication be carried out, but also can be used for field rescue. The current system is mainly composed of two parts: service platform and wireless platform. Based on this wireless network transmission system, the process of remote sensing image denoising and remote sensing image classification is studied in this paper. The classified remote sensing image is transmitted through this system, and the remote sensing image classification transmission system is realized. The main research contents of this paper include the following four aspects: 1) the design and implementation of the service platform in the wireless network transmission system. The design of communication protocol SWIP protocol between wireless platform and service platform, the realization of information transmission between wireless platforms and the description of transmission process. 2) the noise type analysis of remote sensing image, aiming at the noise type included in remote sensing image. The median filter and wavelet threshold denoising method are selected for denoising processing. The shortcomings of traditional wavelet threshold denoising method are analyzed, and a double threshold wavelet threshold denoising function .3) is proposed to analyze and compare the common image classification algorithm. The K-means clustering algorithm is selected to classify remote sensing images, and the problems existing in the traditional K-means clustering algorithm in the process of remote sensing image classification are pointed out. This paper presents a K-means clustering algorithm. 4) the wireless network transmission system is applied to remote sensing image classification. The remote sensing image classification and transmission system is realized. In this paper, the Matlab simulation experiment is carried out. The peak signal-to-noise ratio (PSNR) is taken as the objective evaluation criterion of image denoising effect, and the denoising effect of traditional wavelet threshold de-noising algorithm and improved wavelet threshold de-noising algorithm is compared. The experimental results show that the improved wavelet threshold denoising method is better for remote sensing image denoising. Similarly, it is found that the improved K-means clustering algorithm is better for the classification of remote sensing images.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP751

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 黃寧,劉小軍,朱敏慧,張守融;遙感圖像分類技術(shù)研究[J];測(cè)試技術(shù)學(xué)報(bào);2001年02期

2 劉慶生,劉高煥,藺啟忠,王志剛;基于邏輯斯蒂模型的遙感圖像分類[J];國(guó)土資源遙感;2001年01期

3 譚衢霖,邵蕓;雷達(dá)遙感圖像分類新技術(shù)發(fā)展研究[J];國(guó)土資源遙感;2001年03期

4 杜鳳蘭,田慶久,夏學(xué)齊;遙感圖像分類方法評(píng)析與展望[J];遙感技術(shù)與應(yīng)用;2004年06期

5 李石華,王金亮,畢艷,陳姚,朱妙園,楊帥,朱佳;遙感圖像分類方法研究綜述[J];國(guó)土資源遙感;2005年02期

6 付小勇;楊建祥;譚靖;;基于統(tǒng)計(jì)的遙感圖像分類方法[J];林業(yè)調(diào)查規(guī)劃;2005年06期

7 王一達(dá);沈熙玲;謝炯;;遙感圖像分類方法綜述[J];遙感信息;2006年05期

8 李華;曹衛(wèi)彬;劉姣娣;;土地監(jiān)測(cè)中提高遙感圖像分類精度的方法研究[J];安徽農(nóng)學(xué)通報(bào);2008年22期

9 岳昔娟;張勇;黃國(guó)滿;;改進(jìn)的直方圖均衡化在遙感圖像分類中的應(yīng)用[J];四川測(cè)繪;2008年04期

10 曾聯(lián)明;吳湘濱;劉鵬;;感興趣區(qū)域遙感圖像分類與支持向量機(jī)應(yīng)用研究[J];計(jì)算機(jī)工程與應(yīng)用;2009年06期

相關(guān)會(huì)議論文 前8條

1 張守娟;周詮;;空間數(shù)據(jù)挖掘決策樹(shù)算法在遙感圖像分類中的應(yīng)用研究[A];中國(guó)遙感應(yīng)用協(xié)會(huì)2010年會(huì)暨區(qū)域遙感發(fā)展與產(chǎn)業(yè)高層論壇論文集[C];2010年

2 鄧文勝;邵曉莉;劉海;萬(wàn)誥方;許亮;;基于證據(jù)理論的遙感圖像分類方法探討[A];中國(guó)地理學(xué)會(huì)2006年學(xué)術(shù)年會(huì)論文摘要集[C];2006年

3 周軍其;張紅;孫家b,

本文編號(hào):1623815


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1623815.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1c8be***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com