一種寬頻動力吸振器的設(shè)計(jì)研究
本文選題:結(jié)構(gòu)振動 切入點(diǎn):動力吸振器 出處:《北方工業(yè)大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:現(xiàn)代工業(yè)的發(fā)展使得人們的生活水平有了大幅度的提高,與此同時,工業(yè)設(shè)備產(chǎn)生的振動及噪聲污染也帶來了很多危害,其對于環(huán)境、人身健康、設(shè)備壽命及精度等方面都造成了不良的影響。動力吸振作為減振方法的一種,由于結(jié)構(gòu)簡單、控制方便、價(jià)格低等優(yōu)點(diǎn),因此在工程實(shí)踐中的應(yīng)用十分廣泛。 本文作者提出了一種動力吸振器的結(jié)構(gòu),該動力吸振器一方面通過壓縮或拉伸C型彈簧組來實(shí)現(xiàn)彈簧剛度的連續(xù)可調(diào),進(jìn)而控制動力吸振器固有頻率的調(diào)節(jié);另一方面,通過更換可調(diào)質(zhì)量塊的大小,可以實(shí)現(xiàn)動力吸振器工作頻帶范圍的調(diào)節(jié)。本文建立了動力吸振器彈簧組的物理模型,分析出彈簧組在豎直方向上的剛度系數(shù)與兩個直線螺母間的跨距的平方成正比例關(guān)系,并且通過能量法推導(dǎo)出彈簧的有效剛度表達(dá)式,得知彈簧的有效剛度僅與其截面寬度、厚度和彎曲半徑有關(guān)。通過理論計(jì)算和數(shù)值仿真,得到了兩個直線螺母間的跨距與動力吸振器固有頻率之間的線性關(guān)系,以及動力吸振器的移頻特性,其頻帶變化率最大可以達(dá)到77%。為了檢驗(yàn)動力吸振器的減振效果,本文以平板結(jié)構(gòu)作為振動基體并施加簡諧激勵,通過有限元方法仿真計(jì)算了動力吸振器的減振效果,結(jié)果表明:該動力吸振器在頻帶范圍內(nèi)的最大減振效果達(dá)到9dB,并且當(dāng)動力吸振器安裝在距離振源越近的安裝位置時減振效果越好。 為了使動力吸振器能夠達(dá)到最大的減振效果,對動力吸振器的主要參數(shù)進(jìn)行了分步優(yōu)化設(shè)計(jì):首先建立了動力吸振器減振系統(tǒng)的運(yùn)動學(xué)微分方程,獲得了穩(wěn)態(tài)位移的數(shù)學(xué)表達(dá)式;利用小步長搜索法編程對動力吸振器系統(tǒng)參數(shù):質(zhì)量比μ,激振頻率比g,阻尼比ξ固有頻率比f進(jìn)行了最優(yōu)化設(shè)計(jì);然后以這四個最優(yōu)參數(shù)為基礎(chǔ),通過ANSYS Workbench有限元軟件對動力吸振器的尺寸參數(shù)進(jìn)行了二次優(yōu)化,最終獲得了動力吸振器各個參數(shù)的最優(yōu)解。經(jīng)過優(yōu)化后的動力吸振器的最大減振效果達(dá)到11.8dB,性能提升了近30%。 為使動力吸振器獲得更好的寬頻減振能力,使用HyperWorks有限元軟件對動力吸振器進(jìn)行了拓?fù)鋬?yōu)化設(shè)計(jì),并對優(yōu)化后的動力吸振器減振效果進(jìn)行了仿真計(jì)算,仿真結(jié)果表明:拓?fù)鋬?yōu)化后的動力吸振器在0-200Hz的頻帶范圍內(nèi)比之前具有更多的模態(tài)分布;動力吸振器在50Hz-200Hz頻帶內(nèi)的平均減振效果為5dB,比優(yōu)化前的性能提升了約25%;在0-50Hz頻帶內(nèi)的減振效果較優(yōu)化前略有提升。
[Abstract]:With the development of modern industry, people's living standards have been greatly improved. At the same time, the vibration and noise pollution caused by industrial equipment has also brought a lot of harm to the environment and human health. Dynamic vibration absorption is a kind of vibration absorption method which has the advantages of simple structure, convenient control and low price, so it is widely used in engineering practice. In this paper, a structure of dynamic vibration absorber is proposed. On the one hand, the dynamic vibration absorber realizes the continuous adjustment of spring stiffness by compressing or stretching C-type spring group, and then controls the adjustment of the natural frequency of dynamic vibration absorber, on the other hand, By changing the size of the adjustable mass block, the range of the working frequency band of the dynamic vibration absorber can be adjusted. In this paper, the physical model of the spring group of the dynamic vibration absorber is established. It is found that the stiffness coefficient of the spring group in the vertical direction is proportional to the square of the span between the two linear nuts, and the expression of the effective stiffness of the spring is derived by the energy method, which shows that the effective stiffness of the spring is only related to its cross-section width. The thickness is related to the bending radius. Through theoretical calculation and numerical simulation, the linear relationship between the span between two linear nuts and the natural frequency of the dynamic vibration absorber is obtained, as well as the frequency shift characteristics of the dynamic vibration absorber. In order to test the damping effect of the dynamic vibration absorber, the flat plate structure is used as the vibration matrix and the harmonic excitation is applied. The vibration absorption effect of the dynamic vibration absorber is calculated by the finite element method. The results show that the maximum damping effect of the dynamic vibration absorber is up to 9 dB in the frequency band, and the better the damping effect is when the dynamic vibration absorber is installed near the vibration source. In order to achieve the maximum damping effect of the dynamic vibration absorber, the main parameters of the dynamic vibration absorber are designed step by step. Firstly, the kinematic differential equation of the dynamic vibration absorber damping system is established. The mathematical expression of steady-state displacement is obtained, and the parameters of dynamic vibration absorber are optimized by using small step search method: mass ratio 渭, exciting frequency ratio g, damping ratio 尉 natural frequency ratio f. Based on the four optimal parameters, the dimension parameters of the dynamic vibration absorber are quadratic optimized by ANSYS Workbench finite element software. Finally, the optimal solution of the parameters of the dynamic vibration absorber is obtained. After the optimization, the maximum damping effect of the dynamic vibration absorber reaches 11.8 dB, and the performance is improved nearly 30%. In order to make the dynamic vibration absorber obtain better wideband vibration absorption ability, the topology optimization design of the dynamic vibration absorber is carried out by using HyperWorks finite element software, and the effect of the dynamic vibration absorber after the optimization is simulated. The simulation results show that the dynamic vibration absorber with optimized topology has more modal distribution in the frequency range of 0-200 Hz than before. The average damping effect of the dynamic vibration absorber in the frequency band of 50Hz to 200Hz is 5 dB, which is about 25% higher than that before optimization, and the damping effect in the frequency band of 0-50 Hz is slightly higher than that before optimization.
【學(xué)位授予單位】:北方工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TB535
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱美玲;袁世峰;顏景平;;主動振動控制系統(tǒng)中電磁彈簧的理論研究[J];東南大學(xué)學(xué)報(bào);1993年S1期
2 孫建民,陳玉強(qiáng);一種主動調(diào)諧式內(nèi)燃機(jī)吸振器的設(shè)計(jì)[J];黑龍江工程學(xué)院學(xué)報(bào);2001年02期
3 孫利民,陳豐;一種新型的用于防止輸電線路馳振的阻尼器[J];機(jī)械強(qiáng)度;1998年03期
4 沈偉;易斌;陸偉領(lǐng);;動力吸振器在降低車內(nèi)路噪中的應(yīng)用[J];汽車工程;2010年08期
5 丁文鏡;多自由度振動系統(tǒng)動力調(diào)諧消振理論[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);1985年03期
6 張方春;高層建筑吸振器的最佳參數(shù)[J];山東工業(yè)大學(xué)學(xué)報(bào);1997年02期
7 李劍鋒;龔興龍;張先舟;徐振邦;張培強(qiáng);;主動移頻式動力吸振器及其動力特性的研究[J];實(shí)驗(yàn)力學(xué);2005年04期
8 童宗鵬;章藝;尚國清;華宏星;;艙筏隔振系統(tǒng)水下振動特性的理論分析與試驗(yàn)研究[J];振動與沖擊;2005年06期
9 楊飛;楊智春;王巍;;吸振夾層壁板顫振抑制的吸振器頻率設(shè)計(jì)[J];振動與沖擊;2009年07期
10 蔣偉康;萬泉;嚴(yán)莉;張海濱;賀建良;;軌道交通的約束阻尼鋼軌吸振器技術(shù)研究與應(yīng)用[J];振動與沖擊;2009年10期
,本文編號:1612828
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1612828.html