氧化釔薄膜反應(yīng)濺射法生長(zhǎng)、性能及紅外光學(xué)應(yīng)用研究
本文選題:氧化釔薄膜 切入點(diǎn):反應(yīng)濺射法 出處:《哈爾濱工業(yè)大學(xué)》2016年博士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著航空航天技術(shù)跨入超高音速階段,紅外窗口和頭罩元件經(jīng)受著氣動(dòng)熱/力等極端使役環(huán)境,使得窗口元件的增透保護(hù)顯得尤為重要,因此研制與紅外窗口匹配的紅外增透保護(hù)材料尤為迫切。稀土氧化物是一類(lèi)十分重要且復(fù)雜的氧化物族系,擁有著豐富的物理和化學(xué)性能,因此廣泛地活躍于科技和工業(yè)界,引起了學(xué)者的廣泛興趣,開(kāi)展了大量的探索性研究工作。稀土氧化物涵蓋鑭系氧化物,原子序數(shù)Z從57到71,以及鈧(Z=21)和釔(Z=39)氧化物,這是由于它們具有相似的外層電子結(jié)構(gòu)。稀土氧化物表現(xiàn)出一致的共性以及個(gè)體性(來(lái)源于內(nèi)層4f軌道電子的差異);谘趸悆(yōu)異的高溫穩(wěn)定物性、抗失穩(wěn)強(qiáng)度以及與紅外材料匹配等優(yōu)點(diǎn),它已成為紅外窗口和整流罩增透保護(hù)的優(yōu)選薄膜材料,喚起了氧化釔薄膜材料的基礎(chǔ)研究和紅外應(yīng)用研究的熱潮。二維薄膜材料因其在厚度與其他方向存在巨大差異,所以呈現(xiàn)出不同于塊體材料的奇異結(jié)構(gòu)與物性。薄膜材料的性能由兩種因素決定:一是材料自身屬性;二是材料制備方法和工藝條件。反應(yīng)磁控濺射法因其具有較高的沉積速率、優(yōu)質(zhì)的成膜質(zhì)量、設(shè)備簡(jiǎn)單并易擴(kuò)展等優(yōu)點(diǎn),成為薄膜生長(zhǎng)與研究領(lǐng)域不可或缺的技術(shù)手段之一。本文選取物理氣相沉積技術(shù)-反應(yīng)磁控濺射法為手段,實(shí)現(xiàn)氧化釔薄膜的制備、表征及物化性能研究,最后開(kāi)展了氧化釔紅外增透保護(hù)薄膜應(yīng)用研究。本論文可分為以下幾個(gè)部分:首先,測(cè)試并獲得金屬釔靶顯著的反應(yīng)滯后回線,通過(guò)控制不同氬氣分壓和抽氣速率來(lái)調(diào)控反應(yīng)滯后回線。較之氬氣壓強(qiáng),在500 l/s高抽氣速率下消除了反應(yīng)滯后回線,獲得了金屬-過(guò)渡-中毒三種穩(wěn)定濺射模式。理論研究結(jié)果表明,高抽氣速率可顯著減緩靶表面氧化物的生成速率,消除了滯后現(xiàn)象。其次,基于直流磁控濺射法(DCMS),研究了濺射模式以及襯底不同區(qū)域?qū)τ诒∧どL(zhǎng)的影響規(guī)律。結(jié)果表明,氧化釔薄膜的沉積速率依賴(lài)于靶表面不同的濺射模式以及其濺射產(chǎn)額。在金屬濺射模式下薄膜的優(yōu)先生長(zhǎng)取向?yàn)榱⒎?111)晶面,然而在靶中毒模式下,薄膜以立方(421)為擇優(yōu)晶面。在過(guò)渡模式下,出現(xiàn)了立方和單斜兩相混合態(tài)。局域輸氧法使得襯底中心區(qū)域?yàn)榱⒎?111)優(yōu)先生長(zhǎng)晶面,邊緣區(qū)域以單斜(40-2)晶面占主導(dǎo)。排除了等離子體不均勻性對(duì)薄膜晶相的影響并明確了低氧分壓是產(chǎn)生單斜相的原因。利用射頻磁控濺射法(RFMS),研究了氧氣流量、溫度和偏壓對(duì)于薄膜的協(xié)同影響規(guī)律。與直流磁控濺射不同,射頻磁控濺射的滯后現(xiàn)象并不明顯。逐漸增加氧氣分壓使得薄膜晶體結(jié)構(gòu)由立方(111)擇優(yōu)取向轉(zhuǎn)變?yōu)榉蔷B(tài)。無(wú)論襯底溫度如何,負(fù)偏壓使得薄膜生長(zhǎng)存在正常沉積區(qū)和刻蝕區(qū)。在氧氣分壓一定時(shí),高溫和低偏壓有利于立方相的生長(zhǎng),低溫和高偏壓有利于單斜相的生長(zhǎng),這兩種技術(shù)途徑調(diào)控薄膜的缺陷產(chǎn)生和愈合過(guò)程。低氧分壓和偏壓使得薄膜面外方向O/Y/O周期排列缺失氧原子層而轉(zhuǎn)變?yōu)镺/Y周期性排列,導(dǎo)致了立方相向單斜相的轉(zhuǎn)變,并伴隨著結(jié)晶度的劣化。在金屬模式下,薄膜為柱狀晶,然而在中毒模式下柱狀特征消失。柱狀晶的生長(zhǎng)不依賴(lài)于薄膜的晶相而是依賴(lài)于薄膜的結(jié)晶度。薄膜的表面粗糙度不僅依賴(lài)于濺射模式,還由偏壓決定。在金屬模式下薄膜具有較大粗糙度,然而中毒模式下薄膜表面平滑;在正常薄膜沉積區(qū)域,粗糙度具有較大值,然而,刻蝕區(qū)薄膜具有較小的粗糙度歸因于氬離子的刻蝕作用。而后,研究了薄膜的光、力、電及潤(rùn)濕性能。光學(xué)性能與薄膜的結(jié)晶度和晶相緊密聯(lián)系在一起。金屬模式下,薄膜具有較高的折射率,中毒模式反之。溫度對(duì)于折射率的增強(qiáng)作用表現(xiàn)于立方結(jié)晶度的提高,而偏壓則為結(jié)晶度和立方-單斜相轉(zhuǎn)化的雙重增強(qiáng)作用。薄膜的致密度與與折射率有著相類(lèi)似的規(guī)律,空隙率反之。金屬模式下,薄膜具有較高的硬度、模量和彈塑比,中毒態(tài)劣化了力學(xué)性能。溫度與偏壓都可提高薄膜的力學(xué)性能。優(yōu)異的力學(xué)性能來(lái)源于薄膜面外方向結(jié)晶度的提高,較少的缺陷滑移源強(qiáng)化了力學(xué)性能。薄膜表面的成分和微觀結(jié)構(gòu)是決定薄膜表面潤(rùn)濕性的兩種因素。對(duì)于物理氣相沉積法制備的薄膜而言,蒸餾水和乙二醇的接觸角與粗糙度關(guān)系不大,而與表面成分相關(guān)。缺氧態(tài)表面的潤(rùn)濕性較小,這是因?yàn)槿毖鯌B(tài)的表面更容易與(OH)相連。溫度和負(fù)偏壓的升高對(duì)于薄膜介電常數(shù)提高具有積極作用,與負(fù)偏壓相比溫度增加的幅度更大,這是由于立方相與單斜相相比具有較小的缺陷。最后,側(cè)重于研究氧化釔薄膜紅外窗口的增透/保護(hù)性能。理論和實(shí)驗(yàn)結(jié)果表明硫化鋅雙面鍍氧化釔薄膜的透過(guò)率高達(dá)93%。XPS剖面結(jié)果顯示偏壓有助于減小界面吸附氧比例從而強(qiáng)化了界面結(jié)合。具有低發(fā)射率的氧化釔薄膜可有效抑制高溫下硫化鋅和藍(lán)寶石窗口的發(fā)射率。
[Abstract]:Along with the development of aerospace technology in hypersonic phase, infrared windows and domes with pneumatic elements subjected to extreme heat / force causative environment, makes the window element antireflection and protection is particularly important, therefore, with the development of Infrared Antireflective and protective materials of the infrared window is particularly urgent. Rare earth oxide is a kind of very important and complex the oxide family, has a wealth of physical and chemical properties, it is widely active in science and technology and the industry, attracted the interest of scholars, carried out a lot of research work. The rare earth oxide covering Lanthanide Oxides, atomic number Z from 57 to 71, as well as scandium and yttrium (Z=21) (Z=39) oxide, this is because they have similar structure. The outer electrons of rare earth oxides showed consistent commonness and individuality (difference comes from the inner 4f orbit electrons). High temperature stability of yttrium oxide based on excellent The anti buckling strength, and matching and infrared material advantages, it has become the preferred film material in infrared window and dome antireflection and protection, arouse research foundation of yttrium oxide thin film materials and infrared application research upsurge. The two-dimensional film materials because of its to differ in thickness and the other side, so showing a singular the structure and property is different from bulk materials. Material properties are determined by two factors: one is the material itself; two is the method and condition of material preparation. Reactive magnetron sputtering deposition rate due to its high film quality, high quality, simple equipment and has the advantages of easy to expand, become one of the essential technical means of thin film growth and research. This paper selects physical vapor deposition technology - reactive magnetron sputtering method, the yttrium oxide thin film preparation, characterization and physicochemical properties of the research, finally The application of yttrium oxide Infrared Antireflective and protective film. This thesis can be divided into the following parts: first, test and get the obvious reaction of yttrium metal target hysteresis loop, by controlling different argon partial pressure and pumping speed to control the reaction hysteresis loop. Compared with argon pressure, high pumping rate at 500 l/s eliminating the response hysteresis, the transition metal poisoning - three stable sputtering mode. The theoretical results show that the formation rate of high pumping rate can significantly reduce the oxide of the target surface, eliminate the hysteresis phenomenon. Secondly, DC magnetron sputtering (DCMS), based on the study of sputtering mode and substrate for different regions influence of film growth. The results show that the deposition rate of yttrium oxide thin film depends on the sputtering target surface and different amount of sputtering. The film on the metal sputtering mode and to take long for Mr. Li Square (111) surface, but in the target poisoning mode, film in cubic (421) preferred plane. In transition mode, the cubic and monoclinic phase mixed state. Local oxygen method makes the substrate center cubic (111) preferred crystal surface, edge region (40-2) single crystal the surface is dominant. Exclusion of plasma inhomogeneities on the film phase and the influence of oxygen partial pressure is generated. The reason of monoclinic phase by RF magnetron sputtering (RFMS), the oxygen flow rate, temperature and bias for the synergistic effect of the films. Unlike DC magnetron sputtering, hysteresis of RF magnetron sputtering is not obvious. Gradually increase the oxygen partial pressure makes the film crystal structure from cubic (111) preferred orientation into amorphous state. No matter how the negative bias of substrate temperature, which makes the film growth of normal sedimentary zone and etching area. The partial pressure of oxygen in a high. Mild low bias in favor of the growth of the cubic phase, low temperature and high bias in favor of monoclinic phase growth process generated defects of the two approaches to control of the film and healing. Low oxygen partial pressure and bias makes the film plane direction O/Y/O periodic lack of oxygen atoms into O/Y layer and periodic arrangement, LED to the cubic monoclinic phase transition, accompanied by the deterioration of crystallinity. The metal pattern, film is columnar crystal, however in the poisoning mode columnar features disappear. The growth of columnar crystal depends on the crystal but depends on the crystallinity of the films. The surface roughness of the thin film not only rely on in sputtering mode, but also by the bias in mode decision. The metal film has large surface roughness, but smooth film poisoning in normal mode; thin film deposition area, surface roughness has great value, however, the rough etching films with smaller area The role of etching due to argon ion. Then, on the film's light, power, electrical and optical properties and wettability. The crystallization degree and the film closely together. The metal model, refraction film has higher rate of poisoning model and vice versa. Temperature on refractive index enhancement in cubic crystal the improvement of the degree of bias, and for the enhancement of the crystallinity and the double cubic monoclinic phase transformation. The film density is similar with the law and the refractive index, void ratio and vice versa. The metal mode, the film has high hardness, elastic modulus and ratio of toxic state degradation mechanical properties of temperature. With the bias voltage can improve the mechanical properties of the films. The source of excellent mechanical properties to improve the crystallinity of thin film plane direction, strengthen the source slip defect less mechanical properties. The film surface composition and microstructure of film surface is determined Two factors of wettability. For physical vapor deposition of thin films is concerned, little distilled water and glycol contact angle and roughness, and correlated with surface composition. Anoxic surface wettability is small, this is because the surface of anoxic (OH) more easily with increasing temperature and connected. Negative bias for thin film dielectric constant improvement has a positive effect, compared with the negative bias temperature increases, this is due to the cubic and monoclinic phases compared with smaller defects. Finally, focuses on the study of Yttrium Oxide Thin Film Infrared Antireflection window / protection performance. Theoretical and experimental results show that yttrium oxide thin film of zinc sulfide through the double plating rate is as high as 93%.XPS profile showed that bias is helpful in reducing the adsorption oxygen ratio which enhanced the interfacial bonding with yttrium oxide thin film with low emissivity can effectively suppress the high temperature of zinc sulfide and blue The emissivity of the gem window.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TB383.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 盧安球;程應(yīng)珂;李端臨;;萃取色層法分離高純氧化釔中輕希土元素[J];分析化學(xué);1979年02期
2 楊遇春;;氧化釔市場(chǎng)競(jìng)爭(zhēng)加劇[J];稀有金屬;1980年01期
3 張?jiān)掠?陳玉莉;黃奇;王珍珍;;萃取柱色層分離法制取高純氧化釔[J];上海金屬.有色分冊(cè);1981年02期
4 孟慶江;加拿大新建氧化釔工廠[J];江西冶金;1986年04期
5 余鳳仙;;熒光級(jí)氧化釔[J];上海金屬.有色分冊(cè);1986年05期
6 張長(zhǎng)庚;;氧化鋯中氧化釔的X熒光增量法測(cè)定[J];湖南有色金屬;1988年04期
7 呂堅(jiān),郭喜彬,施真珠,楊樺,李敢生;大尺寸氧化釔保溫罩的制備[J];人工晶體學(xué)報(bào);1989年04期
8 林紅,何明生,李建保,楊曉戰(zhàn),梁龍,辛平,相庭吉郎;高純超細(xì)氧化釔粉體的制備及市場(chǎng)分析[J];新材料產(chǎn)業(yè);2005年03期
9 ;硫氧化釔晶體結(jié)構(gòu)的測(cè)定[J];天津化工;1976年01期
10 陳榮輝;王長(zhǎng)慶;;直接光譜法測(cè)定高純氧化釔中稀土雜質(zhì)[J];分析化學(xué);1976年01期
相關(guān)會(huì)議論文 前10條
1 魏坤;胡平貴;石燕;;可控團(tuán)聚狀態(tài)的氧化釔超微粉末的制備[A];首屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1992年
2 馬瑩;喬軍;王寶榮;王晶晶;常叔;;大粒度氧化釔的合成及表征[A];第六屆海峽兩岸超微顆粒學(xué)術(shù)研討會(huì)論文集[C];2009年
3 喻雷琳;鄧漢芹;;氧化釔粉末的粒徑測(cè)量[A];第十屆全國(guó)稀土元素分析化學(xué)學(xué)術(shù)報(bào)告會(huì)論文集[C];2003年
4 駱俊廷;張春祥;;高分子網(wǎng)絡(luò)凝膠法制備氧化釔納米粉體[A];全國(guó)博士后微納米粉體與材料應(yīng)用技術(shù)交流會(huì)論文集[C];2009年
5 張永成;陳沙鷗;欒偉娜;邵渭泉;李達(dá);景悅林;;菱形片狀氧化釔的制備及其形成過(guò)程研究[A];2007高技術(shù)新材料產(chǎn)業(yè)發(fā)展研討會(huì)暨《材料導(dǎo)報(bào)》編委會(huì)年會(huì)論文集[C];2007年
6 葉斌;陶德華;;化學(xué)修飾的納米氧化釔摩擦學(xué)性能研究[A];2006全國(guó)摩擦學(xué)學(xué)術(shù)會(huì)議論文集(一)[C];2006年
7 趙萍紅;何鳳娟;陳璐;;電感耦合等離子體發(fā)射光譜法直接測(cè)定氧化釔,,氧化釔銪共沉產(chǎn)品中十個(gè)非稀土雜質(zhì)元素含量[A];第十二屆全國(guó)稀土元素分析化學(xué)學(xué)術(shù)報(bào)告暨研討會(huì)論文集(下)[C];2007年
8 周?chē)?guó)紅;安麗瓊;靳玲玲;王士維;;大尺寸透明氧化釔陶瓷的制備[A];中國(guó)空間科學(xué)學(xué)會(huì)空間材料專(zhuān)業(yè)委員會(huì)2009學(xué)術(shù)交流會(huì)論文集[C];2009年
9 廖列文;肖林飛;岳航勃;;納米氧化釔制備過(guò)程中聚丙烯酸系分散劑的影響[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第5分冊(cè))[C];2010年
10 張順利;黃小衛(wèi);崔大立;羅永;;稀土氧化釔粒度控制與測(cè)定[A];第九屆全國(guó)稀土分析化學(xué)學(xué)術(shù)報(bào)告會(huì)論文集[C];2001年
相關(guān)重要報(bào)紙文章 前1條
1 記者 吉兆寧;礦冶總院成功研發(fā)高純氧化釔防護(hù)涂層[N];中國(guó)有色金屬報(bào);2013年
相關(guān)博士學(xué)位論文 前1條
1 雷沛;氧化釔薄膜反應(yīng)濺射法生長(zhǎng)、性能及紅外光學(xué)應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 王亞彬;氧化釔—氧化鎂納米復(fù)合陶瓷的制備及其性能研究[D];東北大學(xué);2014年
2 雷立;氧化釔超細(xì)粉體制備及動(dòng)力學(xué)研究[D];廣西工學(xué)院;2011年
3 李健;球形氧化釔的制備及表征[D];內(nèi)蒙古科技大學(xué);2014年
4 尹開(kāi)忠;納米氧化釔的合成及其復(fù)合材料的熱反射性能研究[D];上海師范大學(xué);2010年
5 李維華;氟氧化釔的制備及物理性能研究[D];內(nèi)蒙古科技大學(xué);2011年
6 張德新;添加劑對(duì)氧化釔基材料燒結(jié)行為的影響[D];東北大學(xué);2010年
7 趙鵬;氧化釔燒結(jié)行為的研究[D];東北大學(xué) ;2009年
8 余曉毅;磁控濺射制備氧化釔摻雜鐵薄膜及真空退火對(duì)其影響研究[D];清華大學(xué);2010年
9 薛松;活性碳吸附—沉淀法制備氧化釔超細(xì)粉體的工藝研究[D];武漢工程大學(xué);2012年
10 程宗明;用于透明陶瓷的高活性氧化釔超細(xì)粉體合成研究[D];東北大學(xué);2007年
本文編號(hào):1561469
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1561469.html