徑流型深度膨脹式氣波制冷機(jī)性能研究
本文關(guān)鍵詞: 氣波制冷 制冷效率 制冷溫降 振蕩管 激波 出處:《大連理工大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:氣波制冷機(jī)是一種利用氣體膨脹進(jìn)行制冷的新型制冷設(shè)備,本文以徑向過膨脹氣波制冷機(jī)為研究對象,運(yùn)用數(shù)值模擬的方法并結(jié)合氣體動(dòng)力學(xué)理論對其內(nèi)部流場以及制冷流程進(jìn)行了較為深入的研究。研究成果對氣波制冷機(jī)效率的提高和制冷流程的優(yōu)化具有一定的參考價(jià)值。主要研究內(nèi)容如下: (1)利用激波理論解釋了氣波制冷機(jī)的工作機(jī)理,推導(dǎo)了激波速度的計(jì)算公式,分析了設(shè)備內(nèi)部波系的產(chǎn)生原因和運(yùn)動(dòng)規(guī)律,繪制了徑向氣波制冷機(jī)的理想波圖,對各個(gè)端口的匹配進(jìn)行了詳盡的論述。 (2)對氣波制冷機(jī)的單通道模型進(jìn)行數(shù)值計(jì)算,模擬結(jié)果顯示了通道內(nèi)激波和接觸面的運(yùn)動(dòng)過程,分析了氣波制冷機(jī)端口夾角與激波運(yùn)動(dòng)位置的關(guān)系,研究表明,當(dāng)激波運(yùn)動(dòng)到振蕩管端部時(shí),通道與端口呈現(xiàn)半開半閉狀態(tài)為最優(yōu)的匹配結(jié)果,最后編寫端口匹配程序作為選擇噴嘴間初始夾角的依據(jù)。 (3)對氣波制冷流程進(jìn)行了熱力學(xué)分析,繪制了外循環(huán)式和過膨脹式氣波制冷機(jī)的工作流程圖,分別研究了壓力、溫度以及外循環(huán)量等操作參數(shù)對制冷效率和制冷溫降的影響。研究表明,提高過膨脹度和入口氣體溫度都會(huì)導(dǎo)致制冷效率的增大,增大壓比將會(huì)導(dǎo)致制冷效率的下降和制冷溫降的提高,過高或過低的外循環(huán)量都會(huì)導(dǎo)致氣波機(jī)制冷性能的嚴(yán)重下降。 (4)建立了氣波制冷機(jī)的二維數(shù)值模型,采用數(shù)值模擬的辦法研究了噴嘴、間隙、轉(zhuǎn)子通道等結(jié)構(gòu)對氣波機(jī)制冷性能的影響。研究表明,適當(dāng)增加噴嘴大小和通道長度可以提高制冷效率,制冷效率隨著通道寬度和噴嘴后固壁段長度的增大呈現(xiàn)先增大后減小的趨勢并存在一個(gè)最優(yōu)值,采用斜噴嘴和前彎通道可以一定程度的優(yōu)化氣波機(jī)制冷性能。
[Abstract]:Gas wave refrigerator is a new type of refrigeration equipment which uses gas expansion to refrigerate. In this paper, the radial overexpansion gas wave refrigerator is taken as the research object. The internal flow field and refrigeration process are studied deeply by using numerical simulation and gas dynamics theory. The research results have a certain effect on improving the efficiency of gas wave refrigerator and optimizing the refrigeration process. Reference value. The main research contents are as follows:. 1) the working mechanism of gas wave refrigerator is explained by using shock wave theory, the calculating formula of shock wave velocity is deduced, the cause of producing wave system and the law of motion inside the equipment are analyzed, and the ideal wave diagram of radial gas wave refrigerator is drawn. The matching of each port is discussed in detail. (2) the single channel model of the gas wave refrigerator is numerically calculated. The simulation results show the motion process of the shock wave and the contact surface in the channel. The relationship between the angle between the port of the gas wave refrigerator and the moving position of the shock wave is analyzed. When the shock wave moves to the end of the oscillating tube, the channel and port show the best matching result in the semi-open and semi-closed state. Finally, the port matching program is written as the basis for selecting the initial angle between the nozzles. The thermodynamic analysis of gas wave refrigeration process is carried out, and the working flow charts of outer circulation and over expansion gas wave refrigerators are drawn, and the pressure is studied respectively. The effects of operating parameters such as temperature and external circulation on refrigeration efficiency and cooling temperature drop are studied. It is shown that the increase of overexpansion degree and inlet gas temperature will lead to the increase of refrigeration efficiency. Increasing the pressure ratio will lead to the decrease of the refrigeration efficiency and the increase of the refrigeration temperature drop. Too high or too low external circulation will lead to the serious decline of the refrigeration performance of the gas wave machine. (4) the two-dimensional numerical model of gas wave refrigerator is established. The effects of nozzle, clearance and rotor channel on the refrigeration performance of gas wave refrigerator are studied by numerical simulation. The refrigeration efficiency can be improved by increasing the nozzle size and channel length properly. The refrigeration efficiency increases first and then decreases with the increase of channel width and the length of solid wall behind the nozzle, and there is an optimal value. The cooling performance of air wave machine can be optimized to a certain extent by oblique nozzle and forward bend channel.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TB651
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 黃志達(dá),黃鍾岳,方曜奇,楊大軍,劉洪奎,郭俊昌,孫 遜,張潤和;新型節(jié)能裝置──透平式熱分離機(jī)的研究[J];大連工學(xué)院學(xué)報(bào);1983年03期
2 俞鴻儒;熱分離器內(nèi)的流動(dòng)[J];大連工學(xué)院學(xué)報(bào);1984年04期
3 黃志達(dá),唐山椒,黃鐘岳,楊大軍;RFT-2000型透平式熱分離機(jī)原理及其應(yīng)用[J];大連工學(xué)院學(xué)報(bào);1985年04期
4 李學(xué)來,郭榮偉,方曜奇,俞鴻儒;兩種管外傳熱型式對振蕩管性能的影響[J];化工學(xué)報(bào);2000年01期
5 張京平;存在衰減和真實(shí)氣體效應(yīng)的激波管激波速度的計(jì)算[J];計(jì)量學(xué)報(bào);2000年01期
6 方曜奇,胡志敏;接受管結(jié)構(gòu)對熱分離機(jī)制冷的影響[J];流體工程;1987年03期
7 方曜奇,鄭潔,劉潤杰,朱徹,樊軍,胡大鵬;氣波制冷效率影響因素的實(shí)驗(yàn)研究[J];氣動(dòng)實(shí)驗(yàn)與測量控制;1993年03期
8 劉光宗,方杭安;壓力諧振管的數(shù)值計(jì)算[J];應(yīng)用力學(xué)學(xué)報(bào);1988年02期
9 邵件 ,沈永年 ,馮仰浦 ,張朝涵;轉(zhuǎn)動(dòng)式熱分離機(jī)轉(zhuǎn)速與變壓管長度匹配的研究[J];浙江大學(xué)學(xué)報(bào)(自然科學(xué)版);1988年05期
相關(guān)博士學(xué)位論文 前2條
1 陳圣濤;靜止式氣波制冷機(jī)振蕩與制冷特性的研究[D];大連理工大學(xué);2008年
2 劉培啟;對沖阻尼型氣波制冷機(jī)性能研究[D];大連理工大學(xué);2009年
,本文編號:1513910
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1513910.html