氣液分離器對(duì)兩相流引射制冷系統(tǒng)性能影響的研究
本文關(guān)鍵詞: 兩相流引射制冷 氣液分離器 引射器 引射比 R134a 出處:《天津商業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:在兩相流引射制冷系統(tǒng)中,氣液分離器是其中一個(gè)重要部件,合適的氣液分離器尺寸和結(jié)構(gòu),可以起到比較好的氣液分離的效果,進(jìn)而提高引射器的引射比及整個(gè)制冷系統(tǒng)的性能;引射器是另外一個(gè)重要的部件,用引射器來代替膨脹閥,可以回收高壓工質(zhì)的壓力能,降低壓縮機(jī)耗功,從而提高制冷系統(tǒng)的性能。本文對(duì)以R134a為制冷劑工質(zhì)的兩相流引射制冷系統(tǒng)實(shí)驗(yàn)臺(tái)進(jìn)行了改進(jìn),設(shè)計(jì)了新的氣液分離器,并對(duì)其部件和系統(tǒng)性能進(jìn)行了模擬和實(shí)驗(yàn)研究。首先利用FLUENT軟件對(duì)原、新氣液分離器內(nèi)的流體流動(dòng)分別進(jìn)行了二維和三維的數(shù)值模擬,并對(duì)得到的液相分布云圖、液相速度云圖和氣相速度云圖作了對(duì)比分析。利用CFX軟件對(duì)引射器的內(nèi)部流體的流動(dòng)進(jìn)行了數(shù)值模擬,分析了引射器內(nèi)部流體流動(dòng)狀況。其次,對(duì)R134a引射制冷系統(tǒng)進(jìn)行了實(shí)驗(yàn)分析,比較了原、新氣液分離器的分離效果,分析了在使用新氣液分離器的制冷系統(tǒng)中,噴嘴第一喉部當(dāng)量直徑和第二喉部直徑對(duì)引射器性能以及整個(gè)制冷系統(tǒng)性能的影響,并在相同引射器幾何參數(shù)條件下,對(duì)實(shí)驗(yàn)和模擬結(jié)果進(jìn)行了對(duì)比分析。得出如下結(jié)論:(1)實(shí)驗(yàn)結(jié)果表明,新設(shè)計(jì)的氣液分離器的氣液分離效果得到顯著提高。在引射器幾何尺寸和工況相同的條件下,使用新設(shè)計(jì)的氣液分離器的兩相流引射制冷系統(tǒng)的主蒸發(fā)器的制冷量遠(yuǎn)大于輔助蒸發(fā)器的制冷量,系統(tǒng)主蒸發(fā)器起主要作用。與原系統(tǒng)相比,新系統(tǒng)主蒸發(fā)器的制冷量占總制冷量的百分比大大提高,根據(jù)工況條件的不同,系統(tǒng)主蒸發(fā)器的制冷量占總制冷量的百分比由原來的21.1%~27.8%提高到82.2%~87.3%。(2)實(shí)驗(yàn)結(jié)果表明,使用新設(shè)計(jì)氣液分離器的兩相流引射制冷系統(tǒng)引射器的引射比得到了顯著提高。在引射器幾何尺寸和工況相同的條件下,新制冷系統(tǒng)中引射器的引射比遠(yuǎn)大于原系統(tǒng)中引射器的引射比。根據(jù)工況條件的不同,引射器的引射比由原來的0.2~0.46提高到0.56~0.64。(3)實(shí)驗(yàn)結(jié)果表明,使用新設(shè)計(jì)氣液分離器的兩相流引射制冷系統(tǒng)的總制冷量及COP與原系統(tǒng)的總制冷量和系統(tǒng)COP基本相同。但由于新制冷系統(tǒng)中主蒸發(fā)器制冷量占主導(dǎo)地位,而主蒸發(fā)器中蒸發(fā)溫度稍低于輔助蒸發(fā)器,因此可以認(rèn)為新系統(tǒng)的能量品質(zhì)得到了改善。(4)將模擬結(jié)果與實(shí)驗(yàn)結(jié)果對(duì)比發(fā)現(xiàn),隨第一喉部當(dāng)量直徑的增大,模擬和實(shí)驗(yàn)的引射比均先減小后增大,而隨第二喉部直徑的增大,則先增大后減小,在兩種情況下模擬引射比結(jié)果誤差較大。通過多次實(shí)驗(yàn)證實(shí),第一喉部當(dāng)量直徑不能小于1.8mm,第二喉部直徑不能小于1.4mm,否則實(shí)驗(yàn)工況不能維持穩(wěn)定。
[Abstract]:In the two-phase flow ejection refrigeration system, the gas-liquid separator is one of the important components. The appropriate size and structure of the gas-liquid separator can play a better effect of gas-liquid separation. The ejector is another important component. Using ejector instead of expansion valve can recover the pressure energy of high pressure working fluid and reduce the power consumption of compressor. In order to improve the performance of the refrigeration system, a new gas-liquid separator was designed for the two-phase flow ejector refrigeration system with R134a as refrigerant. The performance of its components and system is simulated and experimentally studied. Firstly, two and three dimensional numerical simulations of fluid flow in the original and new gas-liquid separators are carried out by using FLUENT software, and the liquid phase distribution cloud images are obtained. The liquid phase velocity cloud diagram and the vapor velocity cloud map are compared and analyzed. The flow inside the ejector is numerically simulated by using CFX software, and the fluid flow in the ejector is analyzed. The experimental analysis of R134a ejection refrigeration system is carried out, and the separation effect of the original and new gas-liquid separator is compared, and the refrigeration system using the new gas-liquid separator is analyzed. The influence of the equivalent diameter of the first throat of the nozzle and the diameter of the second throat on the performance of the ejector and the whole refrigeration system, and under the same geometric parameters of the ejector, The experimental results show that the gas-liquid separation efficiency of the newly designed gas-liquid separator has been greatly improved. Under the same geometry and working conditions, the ejector has the same geometric size and working conditions, and the experimental results are as follows: (1) the experimental results are as follows: (1) the experimental results show that the gas-liquid separation efficiency of the newly designed gas-liquid separator is significantly improved. The refrigerating capacity of the main evaporator of the two-phase ejection refrigeration system using the newly designed gas-liquid separator is much larger than that of the auxiliary evaporator, and the main evaporator of the system plays a major role. The refrigerating capacity of the main evaporator in the new system has greatly increased as a percentage of the total refrigerating capacity. According to the different operating conditions, the percentage of the refrigerating capacity of the main evaporator in the total refrigerating capacity has been increased from 21.1g / 27.8% to 82.2g / 87.30.2.) the experimental results show that, The ejector ratio of the ejector of the two-phase ejector refrigeration system using the newly designed gas-liquid separator has been greatly improved. The ejector's ejection ratio in the new refrigeration system is much higher than that in the original system. According to the different operating conditions, the ejector's ejection ratio is increased from 0.2g / 0.46 to 0.560.564.43). The total refrigerating capacity and COP of the two-phase flow ejector refrigeration system using the newly designed gas-liquid separator are basically the same as the total cooling capacity of the original system and the total cooling capacity of the system COP. However, the refrigeration capacity of the main evaporator occupies the dominant position in the new refrigeration system. However, the evaporation temperature in the main evaporator is slightly lower than that in the auxiliary evaporator, so the energy quality of the new system has been improved. (4) comparing the simulation results with the experimental results, it is found that with the increase of the equivalent diameter of the first larynx, The emitter ratio of the simulation and experiment decreases first and then increases, but increases first and then decreases with the increase of the diameter of the second larynx. In both cases, the error of the simulated ejection ratio is large. The equivalent diameter of the first throat should not be less than 1.8 mm, and the diameter of the second throat should not be less than 1.4 mm. Otherwise, the experimental conditions could not be maintained stable.
【學(xué)位授予單位】:天津商業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB657
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 屈曉航;田茂誠;羅林聰;冷學(xué)禮;;波紋狀噴嘴蒸汽引射器性能分析[J];中國電機(jī)工程學(xué)報(bào);2014年35期
2 任立乾;郭憲民;李添龍;;兩段式噴嘴引射器及其引射制冷系統(tǒng)性能實(shí)驗(yàn)研究[J];制冷學(xué)報(bào);2014年04期
3 魏新利;湯本凱;馬新靈;孟祥睿;;兩相噴射器對(duì)壓縮-噴射制冷系統(tǒng)性能的影響研究[J];制冷與空調(diào)(四川);2014年01期
4 孔凡實(shí);崔寶玲;金英子;金羲東;;V形噴嘴的超聲速引射器的數(shù)值模擬[J];浙江理工大學(xué)學(xué)報(bào);2013年04期
5 張敬亭;張琨;任偉;;噴射制冷系統(tǒng)關(guān)鍵部件的數(shù)值分析[J];節(jié)能;2013年02期
6 馬昕霞;袁益超;黃鳴;劉聿拯;;多噴嘴汽-液兩相噴射器的工作特性研究[J];中國電機(jī)工程學(xué)報(bào);2012年14期
7 陳修娟;肖立川;許景偉;;結(jié)構(gòu)參數(shù)對(duì)噴射器內(nèi)二維流場的影響[J];熱力發(fā)電;2009年03期
8 池本徹;武內(nèi)裕嗣;西山鳥;春幸口池上真;松永久嗣;神谷博;;新型噴射循環(huán)(Eject Cycle~)車用冷凍機(jī)的開發(fā)[J];制冷技術(shù);2008年01期
9 沈勝強(qiáng);張琨;;新型可調(diào)式噴射器性能的計(jì)算與分析[J];熱科學(xué)與技術(shù);2007年03期
10 劉敬輝;陳江平;陳芝久;;壓縮/噴射混合制冷系統(tǒng)噴射器設(shè)計(jì)及其變工況特性探討[J];應(yīng)用科學(xué)學(xué)報(bào);2006年06期
相關(guān)會(huì)議論文 前1條
1 孔海利;郭憲民;李添龍;郭雨辰;;可調(diào)式引射器對(duì)兩相流引射制冷循環(huán)系統(tǒng)的影響[A];第六屆中國冷凍冷藏新技術(shù)、新設(shè)備研討會(huì)論文集[C];2013年
相關(guān)碩士學(xué)位論文 前1條
1 郭雨辰;帶有兩段噴嘴的可調(diào)式兩相流引射器特性研究[D];天津商業(yè)大學(xué);2015年
,本文編號(hào):1499921
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1499921.html