天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 城建管理論文 >

型鋼混凝土L形柱空間角節(jié)點(diǎn)抗震性能研究

發(fā)布時(shí)間:2019-06-19 05:17
【摘要】:型鋼混凝土異形柱結(jié)合了鋼與混凝土的優(yōu)點(diǎn),同時(shí)將型鋼混凝土矩形柱與鋼筋混凝土異形柱的優(yōu)點(diǎn)發(fā)揮到極致,已得到越來(lái)越廣泛的應(yīng)用。在結(jié)構(gòu)體系中,節(jié)點(diǎn)不僅是傳力的樞紐,還是受力的重要部位,對(duì)框架結(jié)構(gòu)的重要性不言而喻。實(shí)際的地震作用方向是與建筑軸線呈任意角度,而L形柱因其不對(duì)稱的截面特性使得型鋼混凝土L形柱空間角節(jié)點(diǎn)的受力更加復(fù)雜,因此研究空間角節(jié)點(diǎn)更加合理的加載方式、抗震性能、破壞機(jī)理和剪扭承載力很有必要。在課題組已有研究的基礎(chǔ)上,本文對(duì)型鋼混凝土L形柱空間角節(jié)點(diǎn)進(jìn)行了較為系統(tǒng)的研究。 本文采用課題組設(shè)計(jì)的空間加載裝置對(duì)12個(gè)型鋼混凝土L形柱空間角節(jié)點(diǎn)進(jìn)行低周反復(fù)加載試驗(yàn),考慮了柱截面配鋼形式、加載角度、軸壓比和梁的形式4個(gè)變化參數(shù)。獲取其破壞機(jī)理、荷載-位移滯回曲線及骨架曲線、荷載-應(yīng)變滯回曲線、節(jié)點(diǎn)核心區(qū)剪切變形、梁截面平均曲率和特征點(diǎn)參數(shù),并分析了不同變化參數(shù)對(duì)其峰值荷載、位移延性、極限側(cè)移角、強(qiáng)度退化、剛度退化、耗能能力和累積損傷等抗震性能的影響。試驗(yàn)研究結(jié)果揭示了型鋼混凝土L形柱空間角節(jié)點(diǎn)的破壞機(jī)理,即弱核心試件破壞形態(tài)是以節(jié)點(diǎn)核心區(qū)剪切斜壓破壞為主,彎曲扭轉(zhuǎn)伴隨粘結(jié)破壞為輔,強(qiáng)柱弱梁試件發(fā)生的是梁端彎曲破壞。滯回曲線飽滿,位移延性、耗能能力和抗倒塌能力較好,強(qiáng)度、剛度衰減緩慢,具有較好的抗震能力。實(shí)腹配鋼試件的峰值荷載最高,配T型鋼桁架的試件的延性、抗倒塌能力、耗能能力最好,配槽鋼桁架試件各級(jí)位移下的的累積損傷程度最大。隨著加載角度的降低試件的峰值荷載逐漸降低,延性略有增加,00加載試件較45°加載試件峰值荷載降低了約25%,并且各級(jí)位移下累積損傷程度最高增加30%,剛度退化速度0°加載試件最快,30°加載試件最緩慢。在一定范圍內(nèi)隨著軸壓比的增加,耗能能力更好,試件延性和抗倒塌能力變差,試件的剛度退化更加明顯。梁形式為型鋼混凝土梁的試件較梁形式為鋼梁的試件峰值荷載提高38%,并且累積損傷有較大程度的緩解,延性、抗倒塌能力均較好,梁形式為鋼筋混凝土梁的試件的剛度退化較帶鋼梁更加明顯。 采用有限元軟件Abaqus對(duì)既有試驗(yàn)試件LJ-1-LJ-9進(jìn)行有限元分析,破壞形態(tài)與試驗(yàn)相似,計(jì)算的滯回曲線較試驗(yàn)的更加飽滿、對(duì)稱,初始剛度和峰值荷載較試驗(yàn)值偏大,峰值荷載計(jì)算值與試驗(yàn)值的誤差基本在10%以內(nèi),滿足一般的精度。在此基礎(chǔ)上設(shè)計(jì)各種工況下的足尺試件74個(gè),并對(duì)其進(jìn)行滯回特性有限元分析,考慮了柱截面配鋼形式、軸壓比、加載角度、混凝土強(qiáng)度等級(jí)、肢高厚比、配鋼率、不等肢、梁線剛度、柱剪跨比9個(gè)變化參數(shù),分析了各變化參數(shù)對(duì)型鋼混凝土空間角節(jié)點(diǎn)峰值荷載、耗能和延性影響,與試驗(yàn)結(jié)果大致相符。綜合試驗(yàn)與有限元結(jié)果得出主要結(jié)論并給出建議: 1)工程設(shè)計(jì)中建議優(yōu)先選用實(shí)腹配鋼形式,因其較空腹配鋼的峰值荷載提高10%以上,綜合抗震性能最好; 2)三種配鋼形式的試件的位移延性隨軸壓比增加而下降,特別是配T型鋼桁架試件下降最快,建議軸壓比限值設(shè)計(jì)值為0.5; 3)加載角度與峰值荷載的關(guān)系反映在極坐標(biāo)軸內(nèi)關(guān)于45°角和135°角對(duì)稱,加載角在45°以內(nèi),隨著加載角度的增加峰值荷載增加,加載角度為45°的試件的極限承載力較平面節(jié)點(diǎn)提高了約30%。0°是結(jié)構(gòu)的最不利加載方向。試件的耗能和延性隨著加載角度的增加逐漸降低,與平面節(jié)點(diǎn)相比,加載角度為45°的試件延性系數(shù)降低約10%,雙向加載對(duì)結(jié)構(gòu)的延性有一定的不利影響; 4)混凝土強(qiáng)度等級(jí)的提高會(huì)降低試件延性,建議最優(yōu)混凝土強(qiáng)度等級(jí)為C40; 5)提高肢高厚比和柱截面配鋼率均可提高試件峰值荷載和耗能能力,但延性變差。建議最優(yōu)肢高厚比為3.0,最優(yōu)柱截面配鋼率為4%~6%; 6)兩肢高度比的增加會(huì)提高試件的峰值荷載和耗能能力,最大幅度高達(dá)16.2%,即使試件延性變差但仍大于3,若工程實(shí)際需要,長(zhǎng)肢的高度最大可取960mm; 7)梁線剛度的增加可以有效提高試件的峰值荷載和延性,與梁柱線剛度比為0.1的試件相比,梁柱線剛度比為0.45的試件峰值荷載增幅可達(dá)2倍以上,延性系數(shù)增加68%,建議梁柱線剛度比為0.4~0.5; 8)柱剪跨比的增加會(huì)大幅降低試件的峰值荷載,也會(huì)降低試件耗能,剪跨比介于2.0~3.5,延性較好,建議剪跨比為2.0~3.5,對(duì)應(yīng)的建筑層高可取2.80m~5.00m。 在分析試驗(yàn)研究結(jié)果及對(duì)有限元數(shù)據(jù)的擬合和回歸的基礎(chǔ)上,提出了型鋼混凝土L形柱空間角節(jié)點(diǎn)的極限抗剪承載力計(jì)算公式,該公式在已有的研究成果基礎(chǔ)上引入了加載角度、抗扭降低系數(shù)、軸壓比和梁高與柱高之比,其計(jì)算結(jié)果較符合試驗(yàn)結(jié)果,該公式具有一定的參考價(jià)值。
[Abstract]:The steel-concrete special-shaped column is combined with the advantages of steel and concrete, and meanwhile, the advantages of the section steel concrete rectangular column and the reinforced concrete special-shaped column are brought to the utmost, and the steel-concrete special-shaped column has been widely applied. In the structure system, the node is not only the pivot of force transfer, but also the important part of stress, and the importance of the frame structure is self-evident. The actual earthquake action direction is at an arbitrary angle to the axis of the building, and the L-shaped column is more complex than the stress of the L-shaped column space corner node due to its asymmetric cross-section characteristics, therefore, the loading mode and the anti-seismic performance of the spatial corner node are more reasonable, The damage mechanism and shear-torsional bearing capacity are necessary. On the basis of the research of the research group, this paper makes a systematic study on the L-shaped column space corner node of the section steel. In this paper, we use the space loading device designed by the research group to carry on the low-cycle and repeated loading test on the space angle node of the L-shaped column of the 12-section steel concrete, considering the form of the column section, the loading angle, the axial compression ratio and the form of the beam. The damage mechanism, the load-displacement hysteresis curve and the skeleton curve, the load-strain hysteresis curve, the shear deformation of the core region of the node, the mean curvature of the beam section and the characteristic point parameters are obtained, and the peak load, the displacement ductility, the limit side shift angle and the strength of the beam are analyzed. The image of seismic performance, such as the degradation of stiffness, energy dissipation, and cumulative damage In response to the results of the test, the failure mechanism of the L-shaped column space corner node of the section steel concrete is revealed, that is, the failure mode of the weak core test piece is mainly caused by the shear oblique pressure failure of the core area of the node, the bending torsion is accompanied by the failure of the bonding, and the strong column weak beam test piece is caused by the bending and breaking of the beam end. the hysteresis curve is full, the displacement ductility, the energy dissipation capacity and the anti-collapse capability are better, the strength and the rigidity are slow to decay, The peak load of the test piece is the highest, and the ductility, the anti-collapse ability and the energy dissipation capacity of the test piece with the T-shaped steel frame are the best, and the cumulative damage degree at all levels of the test piece with the channel steel frame is the most Large. As the load angle decreases, the peak load of the test piece is gradually reduced, the ductility is slightly increased, the peak load of the loading test piece at 45 擄 of the loading test piece is reduced by about 25%, and the cumulative damage degree at all levels is up to 30. %, the stiffness degradation speed is 0 擄, the test piece is the fastest, and the 30 擄 loading test piece is the most slow. In a certain range, with the increase of the axial compression ratio, the energy dissipation capacity is better, the ductility and the anti-collapse capacity of the test piece are worse, and the stiffness degradation of the test piece is more clear. The beam form of the beam is the test piece of the section steel concrete beam, the peak load of the test piece of the steel beam is increased by 38%, and the cumulative damage has a great degree of relief, the ductility and the anti-collapse ability are good, the stiffness of the test piece in the beam form is the reinforced concrete beam is more clear than that of the steel beam, The finite element software Abaqus is used to analyze the existing test piece LJ-1-LJ-9, and the damage form is similar to that of the test. The calculated hysteretic curve is more full, symmetrical, initial and peak load less than that of the test. If the value is too large, the error of the peak load calculation value and the test value is basically within 10%, meeting the general requirements In this paper,74 specimens of the foot rule under various working conditions are designed, and the hysteretic characteristic is analyzed by the finite element method. The steel form, the axial compression ratio, the loading angle, the concrete strength grade, the high-thickness ratio, the steel distribution ratio, the non-equal limb and the beam of the column section are considered. The influence of various parameters on the peak load, energy consumption and ductility of the steel-reinforced concrete space-angle node is analyzed, and the influence of each parameter on the peak load, energy consumption and ductility of the steel-concrete space-angle node is analyzed. In accordance with the results of the combined test and the finite element results, the main conclusions are drawn and given It is suggested that:1) In engineering design, it is recommended that the form of real-belly steel distribution be selected as a priority, because the peak load of the higher-speed steel-matched steel can be increased by more than 10%, and the comprehensive anti-corrosion method The seismic performance is the best;2) the displacement ductility of the test pieces in the three forms of steel distribution decreases with the increase of the axial compression ratio, especially the test piece with T-shaped steel is the fastest, and the axial compression ratio limit is recommended. The design value is 0.5;3) The relationship between the loading angle and the peak load is reflected in the polar coordinate axis with respect to 45 擄 The angle and the 135 擄 angle are symmetrical and the loading angle is within 45 擄. With the increase of the loading angle, the peak load is increased, and the ultimate bearing capacity of the test piece with the loading angle of 45 擄 is increased by about 30%.0 擄 is the junction The most unfavorable loading direction of the structure. The energy dissipation and the ductility of the test piece are gradually reduced with the increase of the loading angle, and the ductility coefficient of the test piece with the loading angle of 45 degrees is reduced by about 10% as compared with the plane node, and the two-way loading is the extension of the structure. Have a certain adverse effect;4) concrete strength, etc. The improvement of the stage can reduce the ductility of the test piece, and it is suggested to be the best The strength grade of the concrete is C40;5) The high-thickness ratio of the limb and the steel ratio of the section of the column can be improved, and the peak value of the test piece can be improved. The load and energy dissipation capacity, but the ductility is poor. It is recommended that the optimal limb height ratio is 3.0, the most the steel ratio of the high-column section is 4-6%;6) the increase of the height ratio of the two limbs increases the peak load and the energy-consuming capacity of the test piece, and the maximum amplitude is as high as 16.2%, even if the ductility of the test piece The variation is still greater than 3, and if the actual needs of the project The maximum height of the long limb is 960 mm; (7) the increase of the stiffness of the beam can effectively improve the peak load and the ductility of the test piece, and the peak load of the test piece with the beam-to-column stiffness ratio of 0.45 is increased as compared with the test piece with the stiffness ratio of the beam-to-column line of 0.1. The amplitude can be up to 2 times, and the ductility coefficient is increased by 68%. It is suggested that the beam-to-column stiffness ratio is 0.4-0.5;8) The increase of the cross-span ratio of the column can greatly reduce the peak load of the test piece, also reduce the energy consumption of the test piece, the shear span ratio is between 2.0 and 3.5, the ductility is good, the recommended shear span ratio is 2.0-3.5, The calculation formula of the ultimate shear capacity of the L-shaped column space corner node of the section steel is proposed based on the analysis of the results of the test and the fitting and regression of the finite element data. The loading angle, the torsion-reduction coefficient, the axial compression ratio and the ratio of the beam height to the column height are introduced on the basis of the research results.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU398.9;TU352.11

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 曹萬(wàn)林,王光遠(yuǎn),歐進(jìn)萍,魏文湘,吳建有;周期反復(fù)荷載作用下鋼筋混凝土十字形柱的性能[J];地震工程與工程振動(dòng);1994年03期

2 曹萬(wàn)林,王光遠(yuǎn),吳建有,魏文湘;不同方向周期反復(fù)荷載作用下L形柱的性能[J];地震工程與工程振動(dòng);1995年01期

3 曹萬(wàn)林,王光遠(yuǎn),魏文湘,吳建有;不同方向周期反復(fù)荷載作用下T形柱的性能[J];地震工程與工程振動(dòng);1995年04期

4 曹萬(wàn)林,黃選明,王普山,張建偉,鄭漢兵;帶交叉筋十字形短柱抗震性能試驗(yàn)研究[J];地震工程與工程振動(dòng);2002年05期

5 黃選明,曹萬(wàn)林,崔建升,鄭漢兵,馬景春;帶交叉鋼筋T形截面短柱抗震性能試驗(yàn)研究[J];地震工程與工程振動(dòng);2003年01期

6 崔建宇;孫建剛;宋玉普;;鋼筋混凝土框架角節(jié)點(diǎn)抗剪強(qiáng)度試驗(yàn)研究[J];地震工程與工程振動(dòng);2008年05期

7 劉義;趙鴻鐵;薛建陽(yáng);陳宗平;;型鋼混凝土異形柱恢復(fù)力特性的試驗(yàn)研究[J];地震工程與工程振動(dòng);2009年02期

8 繆俊華;耿永紅;;L形型鋼混凝土異形柱節(jié)點(diǎn)受力性能分析[J];福建建設(shè)科技;2008年04期

9 李旭紅;房貞政;;預(yù)應(yīng)力混凝土空間框架角節(jié)點(diǎn)二維抗震性能試驗(yàn)研究[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年02期

10 王丹;黃承逵;劉明;;異形柱斜向受剪承載力的試驗(yàn)研究[J];工程建設(shè)與設(shè)計(jì);2006年08期

相關(guān)博士學(xué)位論文 前2條

1 劉義;型鋼混凝土異形柱框架節(jié)點(diǎn)抗震性能及設(shè)計(jì)方法研究[D];西安建筑科技大學(xué);2009年

2 劉祖強(qiáng);型鋼混凝土異形柱框架抗震性能及設(shè)計(jì)方法研究[D];西安建筑科技大學(xué);2012年



本文編號(hào):2502119

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2502119.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2406c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com