FRP加固鋼梁界面剝離損傷的瑞利波檢測(cè)技術(shù)數(shù)值研究
[Abstract]:With the rapid development of space long-span steel structure in recent years, more and more steel structures strengthened by FRP (Fiber Reinforced Plastics) are strengthened because of the insufficient bearing capacity of the original structure. Nondestructive testing of interfacial peeling damage of long-span FRP strengthened steel structure is carried out. It is of great significance for the maintenance and maintenance of steel structures strengthened with FRP to ensure the safety and reliability of large and important steel structure buildings. In this paper, how to detect the interfacial peeling damage length by using the variation law of the velocity dispersion curve of the Rayleigh wave group is studied. When the Rayleigh wave propagates on the surface of the steel beam strengthened by FRP, the dispersion characteristics of the Rayleigh wave will change, and the dispersion curve of the Rayleigh wave velocity reflects the dispersion characteristics of the Rayleigh wave. In order to study how to use Rayleigh wave dispersion information for damage identification, the finite element model of FRP and steel two-layer medium is established, and the generation mechanism and propagation characteristics of Rayleigh wave on the surface of steel beam strengthened by FRP are studied. The Rayleigh wave is identified from the wave field snapshot, the influence parameters of the wave field numerical simulation are determined, the interfacial peeling damage of the steel beam strengthened by FRP is simulated, and the cross-correlation analysis method for solving the velocity dispersion curve of the Rayleigh wave group is introduced. The accuracy of the finite element simulation is verified by the comparison between the Rayleigh wave velocity calculated by the theoretical formula and the Rayleigh wave velocity simulated by the finite element method. In this paper, the two-dimensional finite element simulation of steel beams strengthened with full-span FRP is carried out, the effects of peeling damage and cracks on the propagation of Rayleigh waves are analyzed, and the corresponding velocity dispersion curves of Rayleigh wave groups are calculated forward. The relationship between the interfacial peeling damage and the velocity dispersion curve of the Rayleigh wave group is found out. When the interface peeling damage occurs, the amplitude of the Rayleigh wave group velocity between the same detection point pairs decreases in some frequency bands, and the velocity dispersion curve of the Rayleigh wave group tends to shift downward in the corresponding frequency band, and the longer the interface peeling damage is, the larger the interface peeling damage length is. The larger the downward translation of the curve is, the greater the downward translation of the curve is. The difference of velocity dispersion curve between different detection point pairs in the same structure is related to the interfacial peeling damage. In this paper, Euclidean distance and angular separation degree are used to measure the difference between dispersion curves. It is considered that when the angular separation degree of the two curves is more than 0.9, the data collected in the detection process are effective. The corresponding Euclidean distance can be used as an index for interfacial peeling damage detection. Based on this, a method for detecting interfacial peeling damage of steel beams strengthened with FRP is proposed in this paper. In this paper, the normalized average Euclidean distance is used as the detection index of interfacial peeling damage. The three-dimensional finite element model of steel beams strengthened with non-full-span FRP is established, and the damage detection method based on the model is used to simulate the interfacial peeling damage of steel beams strengthened by FRP. The three influencing factors of the minimum recoverable size and the comparative advantages of the detection methods in this paper are analyzed.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU393.3;TU317
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;用瑞利波波速法測(cè)定地基土動(dòng)力特性[J];勘察技術(shù)資料;1974年05期
2 董中華,孫軍;瑞利波探測(cè)技術(shù)及其應(yīng)用[J];青島大學(xué)學(xué)報(bào)(自然科學(xué)版);1996年03期
3 劉拓;喬文孝;車小花;段文星;趙玉宏;;利用流-固交界面上的偽瑞利波幅度進(jìn)行液位檢測(cè)的實(shí)驗(yàn)測(cè)量[J];聲學(xué)學(xué)報(bào);2014年05期
4 楊天春,易偉建,何繼善,呂紹林,Giovanni Cascante;瑞利波泄漏模式的模擬研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年04期
5 夏唐代;陳云敏;吳世明;;利用瑞利波速度彌散特性反演地基參數(shù)[J];振動(dòng)工程學(xué)報(bào);1991年04期
6 楊光,楊吉生;水平液固界面上瑞利波輻射的有限模型[J];地震工程與工程振動(dòng);1997年03期
7 柴華友,汪江波,周一勤,陳星燁;瑞利波分析方法及應(yīng)用進(jìn)展[J];巖石力學(xué)與工程學(xué)報(bào);2002年01期
8 徐晨鳴;周艷紅;;瑞利波檢測(cè)技術(shù)在高速公路改擴(kuò)建工程中的應(yīng)用[J];交通標(biāo)準(zhǔn)化;2013年07期
9 柴華友;韋昌富;;剛度緩變介質(zhì)中瑞利波特性[J];巖土力學(xué);2009年09期
10 陳龍珠,黃秋菊,夏唐代;飽和地基中瑞利波的彌散特性[J];巖土工程學(xué)報(bào);1998年03期
相關(guān)會(huì)議論文 前10條
1 孟照輝;段道景;林旭光;應(yīng)曉建;;探地雷達(dá)與瑞利波在地基檢測(cè)中的綜合應(yīng)用[A];2000年中國(guó)地球物理學(xué)會(huì)年刊——中國(guó)地球物理學(xué)會(huì)第十六屆年會(huì)論文集[C];2000年
2 金士杰;安志武;王小民;廉國(guó)選;;表面裂縫處瑞利波散射的動(dòng)態(tài)光彈研究[A];中國(guó)聲學(xué)學(xué)會(huì)第十屆青年學(xué)術(shù)會(huì)議論文集[C];2013年
3 劉貴林;閆永發(fā);;瞬態(tài)瑞利波探測(cè)技術(shù)在煤礦地質(zhì)勘探中的應(yīng)用[A];第四屆全國(guó)煤炭工業(yè)生產(chǎn)一線青年技術(shù)創(chuàng)新文集[C];2009年
4 郭海鷗;;瑞利波探傷在航空修理中的應(yīng)用[A];陜西省第十一屆無(wú)損檢測(cè)年會(huì)論文集[C];2008年
5 魯來(lái)玉;張碧星;;考慮高階模式的瑞利波反演研究[A];中國(guó)聲學(xué)學(xué)會(huì)2003年青年學(xué)術(shù)會(huì)議[CYCA'03]論文集[C];2003年
6 師芳芳;張碧星;;瑞利波在界面上的反射和透射[A];中國(guó)聲學(xué)學(xué)會(huì)2006年全國(guó)聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年
7 趙兆;王勇;張仲禮;;瑞利波超前探技術(shù)在跟蹤長(zhǎng)距離掘進(jìn)巷道中的應(yīng)用研究[A];陜西地球物理文集(九)[C];2010年
8 魯來(lái)玉;張碧星;汪承灝;;瑞利波高階模式的實(shí)驗(yàn)和反演研究[A];中國(guó)聲學(xué)學(xué)會(huì)2006年全國(guó)聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年
9 魯來(lái)玉;張碧星;汪承灝;;層狀介質(zhì)中瑞利波的時(shí)頻分析[A];中國(guó)地球物理學(xué)會(huì)第二十屆年會(huì)論文集[C];2004年
10 胡文祥;錢夢(mèng)
本文編號(hào):2488316
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2488316.html