新型混合連肢墻節(jié)點(diǎn)抗震性能研究
[Abstract]:The steel connecting beam is used instead of the original reinforced concrete connecting beam to form the mixed multi-limb wall system. The steel-connected beam is designed according to the energy dissipation beam section of eccentrically braced steel frame. It combines the advantages of strong deformation ability of steel beam and large lateral stiffness of concrete shear wall, so it is more suitable for high seismic fortification area. Its unique superiority is highly valued by researchers. The connection joint between steel beam and shear wall is very important to ensure the seismic performance of hybrid wall system. However, previous studies mainly focused on the direct-buried joints in which steel beams were directly inserted into shear walls. Our group proposed that appropriate steel columns should be installed in the edge members of reinforced concrete shear walls. A new type of joint for full welding of steel-connected beams and columns. Through experimental research, finite element analysis and theoretical analysis, the failure mechanism of this new type of joint under cyclic load is studied, and the corresponding seismic design method is put forward. In order to study the seismic behavior of this new type of joints, the low-cycle repeated loading tests of six full-scale joint specimens were carried out, namely, "strong joints with strong joints" and "strong beams with weak joints". The failure mechanism, hysteretic performance, load-carrying capacity, energy dissipation capacity, deformation composition and the influence of the parameters of the specimens were analyzed. The test results show that the hysteretic curve of the strong joint specimen is spindle-shaped and has good seismic performance, which is similar to the performance of the eccentrically braced steel frame with energy dissipation beam, and can solve the problem of reinforced concrete connecting beam. The ductility of small span ratio connecting beam is insufficient; The failure mode of weak joint specimens is shear failure, which is similar to that of steel beam-steel reinforced concrete column joints, and the ductility and energy dissipation capacity are superior to those of ordinary concrete joints. Based on the experimental results, the finite element simulation of specimens under low cyclic loading is carried out by using the finite element software ABAQUS. The appropriate constitutive model of tensile and compressive damage is selected and the bond-slip between steel and concrete is considered. The calculated results are in good agreement with the experimental results. On this basis, the parameter analysis of the weak joint model is carried out. The height and thickness of steel web plate, the diameter of stirrups, the diameter of horizontally distributed bars, the axial compression ratio, the strength of concrete in the joint domain are studied. Whether or not to set the surface bearing plate and other parameters on the hysteretic performance of the joint. Based on the results of test and finite element analysis, the mechanical mechanism of the new type of composite wall joints is analyzed, and the boundary conditions of the steel reinforced concrete (SRC) dark columns are simplified by mechanics. In this paper, the complex new hybrid wall joints are transformed into the steel beam and steel reinforced concrete column joints which have been studied. A model for calculating the horizontal shear force of the joint is proposed, and the formula for calculating the horizontal shear force in the core area of the joint is obtained. With reference to the existing research results, the formulas for calculating the shear capacity of joints are given. The results of test and finite element analysis are compared with those of the formulas, and the results are in good agreement. The ultimate bearing capacity formula of shear yield steel connecting beam and bending yield steel connecting beam is put forward, and two joint specimens are designed in combination with the ultimate bearing capacity formula of the core zone of joint. The accuracy of the calculation formula is proved by finite element calculation.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU352.11
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳景毅;連梁的結(jié)構(gòu)設(shè)計(jì)[J];中外建筑;2004年03期
2 王結(jié)進(jìn),周漢志,盧偉鋒,王占峰,王震國(guó);一種連梁超筋的處理[J];平頂山工學(xué)院學(xué)報(bào);2004年02期
3 劉迪,王全鳳;框架-剪力墻結(jié)構(gòu)中連梁?jiǎn)栴}的探討[J];基建優(yōu)化;2004年05期
4 周林聰;陳龍珠;陳曉寶;;連梁破壞模式與安全狀態(tài)的簡(jiǎn)化判斷[J];工業(yè)建筑;2006年03期
5 莫東;;淺議高層建筑結(jié)構(gòu)設(shè)計(jì)中連梁超筋的解決辦法[J];廣西城鎮(zhèn)建設(shè);2007年11期
6 李珊;程建立;蔣悅;;淺談高層建筑結(jié)構(gòu)中的連梁[J];才智;2010年14期
7 胥玉祥;朱玉華;趙昕;李學(xué)平;;雙連梁受力性能研究[J];結(jié)構(gòu)工程師;2010年03期
8 徐民彥;;高層建筑抗震設(shè)計(jì)時(shí)剪力墻連梁的作用[J];科技信息;2011年11期
9 鐘亞紅;;高層建筑結(jié)構(gòu)設(shè)計(jì)中的連梁超筋問(wèn)題[J];科技與企業(yè);2012年05期
10 呂西林;陳云;蔣歡軍;;新型可更換連梁研究進(jìn)展[J];地震工程與工程振動(dòng);2013年01期
相關(guān)會(huì)議論文 前10條
1 胡欣;喬清朝;;簡(jiǎn)議連梁超限處理[A];土木建筑學(xué)術(shù)文庫(kù)(第14卷)[C];2010年
2 陳云濤;;雙連梁的等效分析[A];第三屆全國(guó)建筑結(jié)構(gòu)技術(shù)交流會(huì)論文集[C];2011年
3 朱勇;周云;;鋼板與鋼筋混凝土連梁的組合協(xié)同作用機(jī)理分析[A];中國(guó)鋼協(xié)鋼-混凝土組合結(jié)構(gòu)分會(huì)第十一次年會(huì)論文集[C];2007年
4 姜忻良;宣波;;剪力墻結(jié)構(gòu)中雙連梁的轉(zhuǎn)角剛度等效方法[A];城市地下空間綜合開(kāi)發(fā)技術(shù)交流會(huì)論文集[C];2013年
5 郭秉山;王海飛;閆月梅;張成林;;剪力墻連梁在循環(huán)荷載下的受力性能研究[A];第二屆全國(guó)工程結(jié)構(gòu)抗震加固改造技術(shù)交流會(huì)論文集[C];2010年
6 胥玉祥;朱玉華;趙昕;;新型內(nèi)嵌鉛芯耗能連梁[A];第九屆全國(guó)現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2009年
7 范重;李波;范學(xué)偉;;超高層建筑剪力墻短連梁有效配筋形式研究[A];建筑結(jié)構(gòu)(2009·增刊)——第二屆全國(guó)建筑結(jié)構(gòu)技術(shù)交流會(huì)論文集[C];2009年
8 吳晉輝;吳偉田;;延性連梁設(shè)計(jì)淺議[A];土木建筑學(xué)術(shù)文庫(kù)(第14卷)[C];2010年
9 李杰臣;蘇園園;;高層剪力墻中連梁的設(shè)計(jì)[A];河南省土木建筑學(xué)會(huì)2010年學(xué)術(shù)大會(huì)論文集[C];2010年
10 張海洋;李璐;;關(guān)于剪力墻結(jié)構(gòu)中連梁常見(jiàn)問(wèn)題的探討[A];土木建筑學(xué)術(shù)文庫(kù)(第9卷)[C];2008年
相關(guān)重要報(bào)紙文章 前1條
1 ;市十二屆人大三次會(huì)議副秘書長(zhǎng)名單[N];湛江日?qǐng)?bào);2008年
相關(guān)博士學(xué)位論文 前4條
1 宋安良;新型混合連肢墻節(jié)點(diǎn)抗震性能研究[D];西安建筑科技大學(xué);2014年
2 韓小雷;帶剛性連梁的雙肢剪力墻及其結(jié)構(gòu)控制性能的研究[D];華南理工大學(xué);1991年
3 車佳玲;FRC對(duì)角斜筋連梁及聯(lián)肢剪力墻抗震性能與設(shè)計(jì)方法研究[D];西安建筑科技大學(xué);2013年
4 楊忠;超高韌性水泥基復(fù)合材料構(gòu)件受剪性能試驗(yàn)研究[D];合肥工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 王春暉;半通縫連梁抗震性能數(shù)值模擬分析[D];青島理工大學(xué);2015年
2 王利強(qiáng);新型耗能連梁抗震性能研究[D];哈爾濱工業(yè)大學(xué);2015年
3 施唯;鋼筋混凝土連梁的破壞機(jī)制與損傷控制研究[D];中國(guó)地震局工程力學(xué)研究所;2015年
4 鐘海牛;桁架式鋼骨混凝土連梁抗震性能試驗(yàn)研究[D];廣西大學(xué);2015年
5 夏承柱;新型配筋形式小跨高比連梁抗震性能與抗剪承載力研究[D];中國(guó)礦業(yè)大學(xué);2015年
6 胡京亞;新型可更換耗能連梁設(shè)計(jì)方法研究[D];廣州大學(xué);2015年
7 孫亞;帶可更換鋼連梁的混合聯(lián)肢剪力墻抗震性能研究[D];清華大學(xué);2015年
8 賈俊杰;混凝土剪力墻連梁基于延性的抗震性能研究[D];鄭州大學(xué);2016年
9 韓鑫;高層剪力墻結(jié)構(gòu)中防屈曲約束支撐連梁不同布置對(duì)抗震性能影響的研究[D];長(zhǎng)安大學(xué);2016年
10 李一康;含鋼率對(duì)改進(jìn)焊接箍筋鋼板—混凝土組合連梁的抗震性能研究[D];華北理工大學(xué);2016年
本文編號(hào):2388945
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2388945.html