小盤嶺巖質(zhì)高邊坡施工過程監(jiān)測及穩(wěn)定性分析
[Abstract]:At present, our country is in the period of rapid development of economic construction. With the development of national economy, highway grade is getting higher and higher, high fill and deep excavation is inevitable, and the situation of building high grade highway under complex terrain condition is increasing day by day. Complex high rock slope is increasing day by day. Because rock high slope is easy to lose stability in construction, it not only causes a lot of economic losses, but also causes certain casualties, so it is of great practical significance to monitor the construction process and analyze the stability of rock high slope. Taking the Xiaopanling high rock slope of Jianxing Expressway in Liaoning Province as the engineering background, the failure types of rock slope, the factors affecting stability and the different modes of deformation and failure of different rock slopes are first summarized in this paper. Find out the main factors that affect the stability of Xiaopanling slope; Then the method of numerical simulation and field monitoring is used to study. Digital photogrammetry is used to collect, analyze and classify the structural surface information of slope. Then the information of structural plane is applied to discrete element software 3DEC to simulate the construction process of slope and to analyze the stability and predict the deformation. Then the deformation of the slope construction process is monitored with total station and level and compared with the prediction. After verifying that the numerical simulation prediction is in accordance with the actual situation on the spot, the excavation condition of the next grade slope is predicted, and the influence of different supporting schemes on the slope stability is studied, so as to optimize the slope support design scheme. The results show that the shear plastic zone appears in the Z direction of the excavation surface of the slope after the third stage slope excavation, but it is still stable, and the displacement vector of the second stage slope is obtained when the slope is excavated. The velocity vector is concentrated on the joint of Z direction 0-15m area of the slope body excavating surface, and the velocity vector increases gradually, and the slope appears local instability failure. During the excavation of the first stage slope, the displacement and velocity vectors continue to increase in most areas of the slope, and the overall instability of the slope occurs. According to the condition of the slope, the optimal layout scheme of monitoring points is put forward. The monitoring points are reduced from 20 to 12 in the direction of 0-15m along the slope, and the number of monitoring points is reduced from 20 to 12 in the 16-50m area. Through numerical simulation of the slope conditions of different design schemes, it is determined that the design of the fourth grade slope support needs no additional bolt, and the third stage slope lengthens the length of the anchor rod from 8 m to 12 m in the direction of 0-15 m along the line. Along the direction of 16-50m area lateral relaxation of bolting support distance from 2m to 5m; In order to ensure the safety of the project, reduce the difficulty of construction, ensure the economic and reasonable engineering measures.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TU753
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張永榮;巖質(zhì)高邊坡穩(wěn)定性的可靠性研究[J];勘察科學(xué)技術(shù);2001年04期
2 劉小平;何志攀;周北;周才輝;;人工巖質(zhì)高邊坡穩(wěn)定性的監(jiān)測和分析[J];勘察科學(xué)技術(shù);2006年05期
3 羅陽明;古松;王廣弟;;成南高速公路巖質(zhì)高邊坡綠化實踐[J];路基工程;2006年06期
4 馮玉波;李乃元;遲延智;劉曉彬;;巖質(zhì)高邊坡的錨固設(shè)計及其穩(wěn)定性分析[J];巖土力學(xué);2006年S2期
5 邱節(jié);馮長征;;建筑巖質(zhì)高邊坡的加固與美化[J];巖土工程界;2007年06期
6 高倚山;;玉環(huán)電廠巖質(zhì)高邊坡穩(wěn)定性及工程設(shè)計方案[J];武漢大學(xué)學(xué)報(工學(xué)版);2007年S1期
7 秦鵬;秦植海;;基于分形理論的巖質(zhì)高邊坡監(jiān)測資料分析[J];水利水運工程學(xué)報;2008年03期
8 曹東偉;;巖質(zhì)高邊坡治理方案初探[J];有色金屬設(shè)計;2008年03期
9 彭呈輝;李彰明;馮強;;鄰近建筑物某巖質(zhì)高邊坡的穩(wěn)定性分析與評價[J];廣東土木與建筑;2009年11期
10 佘金萍;;巖質(zhì)高邊坡動力響應(yīng)分析及其應(yīng)用研究[J];科技資訊;2010年09期
相關(guān)會議論文 前10條
1 黃宏偉;;三峽船閘巖質(zhì)高邊坡開挖的變形時序動態(tài)預(yù)報[A];面向國民經(jīng)濟可持續(xù)發(fā)展戰(zhàn)略的巖石力學(xué)與巖石工程——中國巖石力學(xué)與工程學(xué)會第五次學(xué)術(shù)大會論文集[C];1998年
2 胡昕;柯學(xué);牛志強;郭葆;鄭達(dá);;某電廠巖質(zhì)高邊坡的變形破壞模式分析[A];第3屆全國工程安全與防護學(xué)術(shù)會議論文集[C];2012年
3 高倚山;朱海駿;吳建;韓非;;湖北核電廠巖質(zhì)高邊坡穩(wěn)定性研究與工程設(shè)計方案[A];和諧地球上的水工巖石力學(xué)——第三屆全國水工巖石力學(xué)學(xué)術(shù)會議論文集[C];2010年
4 楊永兵;施斌;祁長青;;巖質(zhì)高邊坡治理與景觀設(shè)計初探[A];2002年中國西北部重大工程地質(zhì)問題論壇論文集[C];2002年
5 劉建東;陳征宙;湯國毅;;巖質(zhì)高邊坡穩(wěn)定性分析的有限元方法[A];地質(zhì)與可持續(xù)發(fā)展——華東六省一市地學(xué)科技論壇文集[C];2003年
6 唐軍峰;唐雪梅;徐國元;;向家壩水電站進水口巖質(zhì)高邊坡隨5·12汶川大地震響應(yīng)的監(jiān)測分析[A];第三屆全國巖土與工程學(xué)術(shù)大會論文集[C];2009年
7 杜朋召;劉建;韓志強;徐華;;基于復(fù)雜結(jié)構(gòu)精細(xì)描述的巖質(zhì)高邊坡穩(wěn)定性分析[A];《巖土力學(xué)》vol.34 增刊1 2013[C];2013年
8 張雷;王洪江;葉勇;王孟渝;;復(fù)雜受力條件下巖質(zhì)高邊坡穩(wěn)定性數(shù)值模擬[A];第八屆全國工程地質(zhì)大會論文集[C];2008年
9 陳祖煜;汪小剛;;巖質(zhì)高邊坡的加固技術(shù)[A];'98水利水電地基與基礎(chǔ)工程學(xué)術(shù)交流會論文集[C];1998年
10 唐軍峰;楊軍;曾祥喜;熊建平;李學(xué)政;;馬延坡順層巖質(zhì)高邊坡變形機理研究[A];中國水力發(fā)電工程學(xué)會第四屆地質(zhì)及勘探專業(yè)委員會第二次學(xué)術(shù)交流會論文集[C];2010年
相關(guān)博士學(xué)位論文 前2條
1 陳鵬宇;巖質(zhì)高邊坡坡體結(jié)構(gòu)特征分析與穩(wěn)定性研究[D];中國地質(zhì)大學(xué);2015年
2 喻軍華;巖質(zhì)高邊坡開挖與支護過程分析[D];浙江大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 薛康;動荷載作用下高速公路巖質(zhì)邊坡崩塌分析及滾石防護措施研究[D];石家莊鐵道大學(xué);2016年
2 盧海軍;巖質(zhì)高邊坡開挖爆破動力響應(yīng)規(guī)律及控制措施研究[D];云南大學(xué);2016年
3 林久卿;某巖質(zhì)高邊坡的穩(wěn)定性分析及錨固優(yōu)化設(shè)計[D];廣西大學(xué);2016年
4 饒文杰;小盤嶺巖質(zhì)高邊坡施工過程監(jiān)測及穩(wěn)定性分析[D];東北大學(xué);2014年
5 宋永鵬;北京市豐臺區(qū)千靈山巖質(zhì)高邊坡穩(wěn)定性分析[D];中國地質(zhì)大學(xué)(北京);2010年
6 石清華;城區(qū)巖質(zhì)高邊坡治理技術(shù)研究[D];重慶大學(xué);2005年
7 朱穎超;建筑巖質(zhì)高邊坡穩(wěn)定性智能診斷研究[D];重慶大學(xué);2012年
8 萬洪;巖質(zhì)高邊坡動力響應(yīng)分析及其應(yīng)用研究[D];武漢理工大學(xué);2009年
9 付超;巖質(zhì)高邊坡開挖與支護分析[D];浙江大學(xué);2002年
10 吳智慧;巖質(zhì)高邊坡開挖防護數(shù)值模擬分析[D];合肥工業(yè)大學(xué);2010年
,本文編號:2314571
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2314571.html