水中典型鹵代甲烷降解影響因素研究
[Abstract]:In recent years, (DBPs), a by-product of drinking water disinfection, has attracted much attention because of its variety, toxicity and wide distribution. DBPs is produced in the disinfection process at the end of water plant, and there is no effective removal method after it is produced. As a necessary link to connect water plants and users, the degradation of pipe network can affect the stability of DBPs and determine its occurrence, distribution and toxicity. However, little is known about the environmental behavior of DBPs in pipe networks, and the reasons for the differences among DBPs are not clear. At the same time, the increase of sudden water pollution events impels the water purification device to enter the home, but the current household mode has little understanding of the effect of DBPs removal. Therefore, it is necessary to carry out systematic and orderly research on the stability of DBPs. In this paper, the degradation behavior of three halogenated methane under various pipe network conditions was determined, and the stability of three halogenated methane in hydrolysis, oxidation, and reduction was studied. The removal efficiency of three halogenated methane by various household methods was investigated. The hydrolysis experiments showed that the hydrolysis of the three halogenated methane was in accordance with the quasi first order reaction and the alkaline hydrolysis, which was in accordance with the hydrolysis equation and the Arrhenius equation. The reaction rate increased with the increase of temperature and pH, and the order of hydrolysis rate was as follows: trichloromethane dichloromethane. The effect of halogen ions on hydrolysis was not significant, but the hydrolysis rate was slightly different in different water bodies. Trichloromethane and tribromomethane hydrolysates are the corresponding halogen ions. The oxidation experiments showed that the oxidation of residual chlorine and chloramine had no obvious effect on the stability of the three halogenated methane in the concentration range of 0-10 mg/L. The reduction experiments show that the reduction of zero-valent iron can rapidly degrade trihalomethane under acidic conditions and slow degradation in neutral and alkaline conditions. The optimum dosage of 8 g / L Fe _ 2 and humic acid could promote the reduction of halomethane by zero valent iron; with SO32-,Fe2 alone, humic acid had no effect on the reduction of halogenated methane; and the reduction rate under different water bodies was that of water, tap water, lake water, water and water, respectively. UV photolysis experiments showed that trichloromethane could not be photolysis by UV254nm, tribromomethane and diiodomethane could be photolysis rapidly under UV254nm and accord with first-order reaction kinetics, pHCl-Br- had no effect on photolysis, I-no _ 3- could promote photolysis, and Fe3, humic acid could inhibit photolysis. The photolysis rate in ultrapure water is faster than that in other water bodies. The experiment of reverse osmosis (RO) water purifier shows that the removal efficiency of three halogenated methane is as follows: granular activated carbon PP cotton compressed activated carbon, the lower the flow rate, the higher the removal rate, and the higher the removal rate of low concentration halogenated methane is higher than that of high concentration. The reverse osmosis membrane has a very high removal rate (99%) of three halogenated methane, and the removal rate is independent of pressure and concentration of, p H. Therefore, household water purifiers in normal use for halogenated methane removal is effective. Household appliances used to remove halogenated methane include hot kettle, microwave oven, ultrasonic cleaning machine, fan, mixer (such as soy milk machine, juicer) and other household appliances. The principle of removal is mainly based on the volatile characteristics of halogenated methane. The experimental results show that temperature, wind speed, ultrasonic speed, rotational speed and microwave can all promote the volatilization of halogenated methane. This shows that these household methods are feasible for emergency treatment of halogenated methane in drinking water. In this paper, several methods of removing halogenated methane have been tried, and good experimental results have been obtained. The results can provide basic data for the environmental behavior of typical halogenated methane in the pipe network. It also provides the reference for the people to deal with the sudden water pollution.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU991.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前5條
1 趙芡;盧俊瑞;辛春偉;鮑秀榮;蘇穎;秦阿強(qiáng);;含鹵代苯酚1,2,3-三唑衍生物的合成及抑菌活性[J];天津理工大學(xué)學(xué)報(bào);2011年01期
2 黃為紅;陳霞;欒建平;;離子色譜法測(cè)定場(chǎng)所空氣中3種鹵代乙酸的方法研究[J];工業(yè)衛(wèi)生與職業(yè)病;2013年06期
3 邵堅(jiān);劉雅莉;金棟;常亮;;黃河水中THM前驅(qū)物的鹵代活性[J];人民黃河;2006年07期
4 向紅;呂錫武;;飲用水中鹵代乙酸測(cè)定方法的研究進(jìn)展[J];理化檢驗(yàn)(化學(xué)分冊(cè));2009年05期
5 ;[J];;年期
相關(guān)會(huì)議論文 前7條
1 宋玉玲;朱本占;汪海林;;鹵代p-苯醌增強(qiáng)過(guò)氧化氫氧化鳥(niǎo)苷分子的研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第02分會(huì)場(chǎng)摘要集[C];2010年
2 趙玉麗;楊利民;王秋泉;;脈沖大體積進(jìn)樣-氣相色譜/電子捕獲負(fù)化學(xué)離子化-四級(jí)桿質(zhì)譜同時(shí)測(cè)定28種鹵代持久性有機(jī)污染物[A];持久性有機(jī)污染物論壇2007暨第二屆持久性有機(jī)污染物全國(guó)學(xué)術(shù)研討會(huì)論文集[C];2007年
3 邵杰;黃春華;朱本占;;5-甲基胞嘧啶被鹵代醌和過(guò)氧化氫氧化機(jī)理的研究[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第2分會(huì)場(chǎng)摘要集[C];2012年
4 劉守信;甄小麗;田霞;趙翠然;胡素坤;;苯環(huán)4-鹵代的sansalvamide A的研究[A];中國(guó)化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(下冊(cè))[C];2006年
5 邵杰;朱本占;;致癌性鹵代醌介導(dǎo)的氫過(guò)氧化物分解反應(yīng)誘導(dǎo)新型DNA氧化損傷的機(jī)理研究[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第20分會(huì):環(huán)境與健康[C];2014年
6 覃浩;朱本占;;不依賴金屬離子的脂質(zhì)過(guò)氧化氫生成自由基機(jī)理研究[A];第五屆全國(guó)環(huán)境化學(xué)大會(huì)摘要集[C];2009年
7 賈亞麗;喬雪玲;李慧珍;陶棟梁;崔玉民;董秋靜;孫文中;;稀土鋱4-鹵代苯甲酸配合物熱穩(wěn)定性與發(fā)光性能關(guān)系研究[A];第十七屆全國(guó)分子光譜學(xué)學(xué)術(shù)會(huì)議論文集[C];2012年
相關(guān)重要報(bào)紙文章 前1條
1 龐曉華;生物基鹵代甲烷可望工業(yè)化[N];中國(guó)化工報(bào);2009年
相關(guān)博士學(xué)位論文 前1條
1 陳少云;氧化還原酶—鹵代醇脫鹵酶多酶法合成手性β-羥基腈[D];浙江大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 孫一鳴;典型地區(qū)有機(jī)鹵代化合物人群暴露狀況研究[D];中央民族大學(xué);2015年
2 湯鐘;水中典型鹵代甲烷降解影響因素研究[D];哈爾濱工業(yè)大學(xué);2014年
3 何松潔;典型地區(qū)大氣和人血清中鹵代有機(jī)化合物水平及相關(guān)性研究[D];中央民族大學(xué);2013年
4 趙鵬波;含鹵代吲哚骨架的新型雜環(huán)化合物的合成與表征[D];渤海大學(xué);2014年
5 王強(qiáng);KMnO_4氧化去除水中鹵代酚類有機(jī)污染物的效能與機(jī)理[D];哈爾濱理工大學(xué);2015年
6 黨菱婧;含吡啶基手性配體的合成及其不對(duì)稱催化鹵代內(nèi)酯化反應(yīng)的研究[D];云南大學(xué);2015年
7 陳明;鹵代苯胺重氮化反應(yīng)衍生物的合成[D];華中師范大學(xué);2009年
8 季勇;幾種鹵代雜環(huán)類農(nóng)藥中間體合成新方法[D];安徽農(nóng)業(yè)大學(xué);2013年
9 呂明燦;串聯(lián)的5-Endo鹵代內(nèi)酰胺化C-H鍵氧化官能團(tuán)化合成β鹵代吡咯烷酮的新方法[D];天津大學(xué);2013年
10 徐欽政;鹵代芳香酸中間體的選擇性合成工藝研究[D];華東理工大學(xué);2011年
,本文編號(hào):2269982
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2269982.html