串聯(lián)式重度混合動(dòng)力裝載機(jī)傳動(dòng)方案與控制策略研究
[Abstract]:With the high energy consumption, poor emission and low fuel efficiency of loaders, it is of great theoretical and practical significance to study the hybrid energy-saving technology of loaders under the situation of energy shortage and environmental deterioration. However, the traditional parallel scheme still retains the hydraulic torque converter, which can not fundamentally improve the transmission efficiency of the system and restricts the development of the parallel structure. The research shows that by effectively managing the energy of the system and reasonably distributing the power of the system, the components of the power system can work in the high efficiency area and achieve better effect of energy saving and emission reduction.
The main contents and conclusions of the thesis include the following points:
1. The structure scheme of the heavy series oil-electric hybrid power system is presented in this paper. The power transmission system model of the series hybrid power loader is established by combining the theoretical formula with the empirical formula. To achieve the minimum power constraint condition, a parameter matching optimization scheme is implemented.
2. The control strategy of Series Series Heavy Hybrid Power Loader System is studied. The self-judgment multi-point control strategy and fuzzy logic control strategy are proposed. The fuzzy logic controller is designed and the control strategy structure and control rules are established. The bench test results show that the two control strategies can ensure the basic work of the engine. At constant engine speed, the self-judging multi-working point switching control strategy saves about 12% fuel compared with the traditional loader, and the fuzzy logic control strategy saves about 14.03% fuel compared with the traditional loader; at variable engine speed, the self-judging score is adopted. The switching control strategy of segment multi-working point saves about 15.05% fuel compared with the traditional loader, and the fuzzy logic control strategy saves about 17.27% fuel compared with the traditional loader.
3. Fuzzy logic control strategy is optimized by instantaneous optimization and quadratic programming algorithm. The calculation model of instantaneous equivalent fuel consumption is established, the system power flow is analyzed, and the energy management strategy based on quadratic programming is formulated. The bench test proves that the instantaneous optimization algorithm further reduces the engine fuel consumption and saves about 18.18% energy compared with the traditional loader; the quadratic programming algorithm realizes the global optimal control path, guarantees the engine to work near the optimal efficiency curve, further improves the fuel economy, and saves about 18% energy compared with the traditional loader. .48%.
4. The first test rig of heavy series oil-electric hybrid loader based on electric drive technology in China is built. The following eight groups of comparative tests are carried out: (1) Traditional test, which works according to the driver's intention control system; (2) Parallel hybrid engine variable speed test, which adopts fuzzy logic control system to control torque fraction. (3) constant speed test of series hybrid engine, using logic threshold control system torque distribution; (4) constant speed test of series hybrid engine, using fuzzy logic control system torque distribution; (5) variable speed test of series hybrid engine, using logic threshold control system torque distribution; (6) series hybrid engine torque distribution; (6) variable speed test, using logic threshold control system torque distribution; (6) series hybrid engine test Hybrid engine variable speed test, the use of fuzzy logic control strategy for system torque distribution; (7) series hybrid engine variable speed test, on the basis of fuzzy logic torque control for instantaneous optimization; (8) series hybrid engine variable speed test, on the basis of fuzzy logic torque control to advance The quadratic programming is used to find the global optimal control path. The correctness and applicability of the proposed energy management control strategy are verified by bench test.
Theoretical and experimental studies show that the series heavy oil-electric hybrid loader replaces the traditional hydraulic torque converter by the power transmission technology and improves the transmission efficiency of the transmission system; the control strategy proposed in this paper realizes the energy management of the system under different working conditions, so that the power source and load can be better matched and improved. Loader efficiency and fuel economy.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TH243
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 彭建鑫;金輝;陳慧巖;陶金陵;;基于PID神經(jīng)網(wǎng)絡(luò)自動(dòng)換擋過(guò)程油門調(diào)速[J];北京理工大學(xué)學(xué)報(bào);2011年10期
2 竇國(guó)珍,黃念慈,張志釗,賀明智;節(jié)能型電動(dòng)車驅(qū)動(dòng)系統(tǒng)的研究[J];電力電子技術(shù);2003年02期
3 鄒乃威;章二平;于秀敏;戴群亮;李開亮;;同軸并聯(lián)混合動(dòng)力裝載機(jī)控制策略的研究[J];中國(guó)工程機(jī)械學(xué)報(bào);2012年02期
4 黃建兵;國(guó)內(nèi)裝載機(jī)動(dòng)力的現(xiàn)狀與發(fā)展趨勢(shì)[J];工程機(jī)械;2001年05期
5 趙丁選;;工程車輛自動(dòng)變速的基本原理[J];工程機(jī)械;2006年09期
6 李鶯鶯;孟廣良;李學(xué)忠;;混合動(dòng)力技術(shù)在工程機(jī)械上的應(yīng)用——信息技術(shù)在工程機(jī)械上的應(yīng)用綜述之三[J];工程機(jī)械;2009年09期
7 徐曉美;唐倩倩;王哲;;混合動(dòng)力裝載機(jī)的研究現(xiàn)狀及發(fā)展趨勢(shì)[J];工程機(jī)械;2012年02期
8 劉良臣;;混合動(dòng)力工程機(jī)械的現(xiàn)狀及展望[J];工程機(jī)械與維修;2010年01期
9 王毓基;黃大展;;二次規(guī)劃在城市公共交通系統(tǒng)工程中的應(yīng)用[J];系統(tǒng)工程;1985年01期
10 鄒乃威;章二平;韓平;戴群亮;鄔萬(wàn)江;于秀敏;;混合動(dòng)力裝載機(jī)節(jié)能途徑分析及結(jié)構(gòu)方案探討[J];工程機(jī)械;2012年12期
相關(guān)博士學(xué)位論文 前10條
1 尹安東;基于混合系統(tǒng)理論的混合動(dòng)力客車控制策略和參數(shù)優(yōu)化研究[D];合肥工業(yè)大學(xué);2010年
2 林瀟;液壓挖掘機(jī)并聯(lián)式混合動(dòng)力系統(tǒng)控制策略研究[D];浙江大學(xué);2010年
3 申彩英;串聯(lián)混合動(dòng)力汽車能量?jī)?yōu)化管理策略研究[D];天津大學(xué);2010年
4 石榮玲;裝載機(jī)并聯(lián)液壓混合動(dòng)力系統(tǒng)設(shè)計(jì)與控制策略研究[D];中國(guó)礦業(yè)大學(xué);2011年
5 林歆悠;混聯(lián)式混合動(dòng)力客車功率均衡能量管理控制策略研究[D];重慶大學(xué);2011年
6 劉樂(lè);串聯(lián)混合動(dòng)力汽車建模與能源管理系統(tǒng)控制策略研究[D];吉林大學(xué);2011年
7 姚永明;基于液壓變壓器的裝載機(jī)節(jié)能研究[D];吉林大學(xué);2011年
8 舒紅;并聯(lián)型混合動(dòng)力汽車能量管理策略研究[D];重慶大學(xué);2008年
9 崔功杰;工程車輛三參數(shù)最佳換擋規(guī)律及控制方法研究[D];吉林大學(xué);2009年
10 郝鵬;液壓挖掘機(jī)動(dòng)力系統(tǒng)匹配及節(jié)能控制研究[D];中南大學(xué);2008年
本文編號(hào):2230792
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2230792.html