鋼板混凝土連梁抗剪性能試驗(yàn)與設(shè)計方法
[Abstract]:In high-rise buildings, connecting beams have an important influence on the bearing capacity, stiffness and ductility of shear walls. Using the ductility and energy dissipation capacity of the connecting beam and dissipating seismic energy, the connected beam is an important component of the shear wall structure to realize the design of the second channel fortification. There is reverse bending moment at both ends of the connecting beam, the thickness of the connecting beam section is small, it is sensitive to shear deformation and easy to shear failure. The shear resistance of ordinary reinforced concrete beams can be improved by placing steel plate in the connecting beam and making the steel plate and reinforced concrete participate in the shear resistance together. The pseudostatic tests of 12 steel plate concrete beams with different ratio of span to height of 1.5 were carried out. The test results show that the shear capacity, displacement ductility and energy dissipation capacity of steel plate concrete connecting beam are obviously higher than that of reinforced concrete connecting beam due to the existence of built-in steel plate. The bearing capacity of the steel plate is obviously increased, and the bearing capacity increases with the increase of the plate distribution ratio. When the plate ratio increases to a certain extent, the increase of the bearing capacity is no longer obvious, but the bearing capacity decreases with the increasing of the plate distribution ratio. The area surrounded by hysteretic curve of steel plate concrete connecting beam is obviously larger than that of ordinary concrete connecting beam, which shows that the former's energy dissipation ability is much larger than the latter, and the area surrounded by hysteretic curve increases with the increase of plate matching ratio. The energy dissipation capacity of the steel plate in the connecting beam is obviously increased, the degradation of strength and stiffness is slow, and the energy dissipation ability is better, but the ratio of plate matching has little effect on the energy dissipation of the connected beam. The test results are analyzed in detail by strain analysis and shear capacity analysis. The measured strain shows that the reverse bending point of the connecting beam is near the middle of the span before the specimen yielding, and the normal strain distribution on the section of the connecting beam basically meets the assumption of the plane section, and after the specimen yielding, the reverse bending point of the connected beam moves gradually to the compression zone. There is a large positive strain in the middle of the section height of the steel plate, which indicates that after the specimen yield, the steel plate has a larger axial force, while the positive strain of the upper and lower edge of the steel section is relatively small, so the steel plate takes part in the partial bending resistance. The flexural bearing capacity is composed of two parts, one is the bending moment of the steel plate section modulus resistance, the other is the moment caused by the axial force of the steel plate to the point of joint force in the concrete compression zone. The shear forces of steel plate and stirrups in the specimens are quantitatively analyzed, and the effect of plate ratio on the shear resistance of steel plate is analyzed. The results show that the shear resistance of concrete is the main factor before the specimen yield. The main function of steel plate and stirrups is to restrain the crack development; after the specimen yield, the concrete cracks and gradually withdraw from the shear work, the shear force originally carried by the concrete transferred to the stirrups and steel plates. When the shear resistance of steel plate in the beam reaches a certain extent, the shear resistance of stirrups is relatively weakened. Based on this, the formula of shear bearing capacity of steel plate concrete connecting beam and the reasonable range of plate ratio are put forward. The nonlinear finite element analysis of the specimen in the experiment is carried out by using the ABAQUS finite element program. The results of the analysis are in good agreement with the test results. The finite element simulation of steel plate concrete connecting beam specimens with different slabs ratio is carried out. According to the analysis results, the correctness of the formula of shear bearing capacity proposed in this paper is verified, and the design suggestion of steel plate concrete connecting beam is put forward. In order to provide reference for engineering design.
【學(xué)位授予單位】:沈陽建筑大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TU398.9
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳景毅;連梁的結(jié)構(gòu)設(shè)計[J];中外建筑;2004年03期
2 王結(jié)進(jìn),周漢志,盧偉鋒,王占峰,王震國;一種連梁超筋的處理[J];平頂山工學(xué)院學(xué)報;2004年02期
3 劉迪,王全鳳;框架-剪力墻結(jié)構(gòu)中連梁問題的探討[J];基建優(yōu)化;2004年05期
4 周林聰;陳龍珠;陳曉寶;;連梁破壞模式與安全狀態(tài)的簡化判斷[J];工業(yè)建筑;2006年03期
5 莫東;;淺議高層建筑結(jié)構(gòu)設(shè)計中連梁超筋的解決辦法[J];廣西城鎮(zhèn)建設(shè);2007年11期
6 李珊;程建立;蔣悅;;淺談高層建筑結(jié)構(gòu)中的連梁[J];才智;2010年14期
7 胥玉祥;朱玉華;趙昕;李學(xué)平;;雙連梁受力性能研究[J];結(jié)構(gòu)工程師;2010年03期
8 徐民彥;;高層建筑抗震設(shè)計時剪力墻連梁的作用[J];科技信息;2011年11期
9 鐘亞紅;;高層建筑結(jié)構(gòu)設(shè)計中的連梁超筋問題[J];科技與企業(yè);2012年05期
10 呂西林;陳云;蔣歡軍;;新型可更換連梁研究進(jìn)展[J];地震工程與工程振動;2013年01期
相關(guān)會議論文 前10條
1 胡欣;喬清朝;;簡議連梁超限處理[A];土木建筑學(xué)術(shù)文庫(第14卷)[C];2010年
2 陳云濤;;雙連梁的等效分析[A];第三屆全國建筑結(jié)構(gòu)技術(shù)交流會論文集[C];2011年
3 朱勇;周云;;鋼板與鋼筋混凝土連梁的組合協(xié)同作用機(jī)理分析[A];中國鋼協(xié)鋼-混凝土組合結(jié)構(gòu)分會第十一次年會論文集[C];2007年
4 姜忻良;宣波;;剪力墻結(jié)構(gòu)中雙連梁的轉(zhuǎn)角剛度等效方法[A];城市地下空間綜合開發(fā)技術(shù)交流會論文集[C];2013年
5 郭秉山;王海飛;閆月梅;張成林;;剪力墻連梁在循環(huán)荷載下的受力性能研究[A];第二屆全國工程結(jié)構(gòu)抗震加固改造技術(shù)交流會論文集[C];2010年
6 胥玉祥;朱玉華;趙昕;;新型內(nèi)嵌鉛芯耗能連梁[A];第九屆全國現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會論文集[C];2009年
7 范重;李波;范學(xué)偉;;超高層建筑剪力墻短連梁有效配筋形式研究[A];建筑結(jié)構(gòu)(2009·增刊)——第二屆全國建筑結(jié)構(gòu)技術(shù)交流會論文集[C];2009年
8 吳晉輝;吳偉田;;延性連梁設(shè)計淺議[A];土木建筑學(xué)術(shù)文庫(第14卷)[C];2010年
9 李杰臣;蘇園園;;高層剪力墻中連梁的設(shè)計[A];河南省土木建筑學(xué)會2010年學(xué)術(shù)大會論文集[C];2010年
10 張海洋;李璐;;關(guān)于剪力墻結(jié)構(gòu)中連梁常見問題的探討[A];土木建筑學(xué)術(shù)文庫(第9卷)[C];2008年
相關(guān)重要報紙文章 前1條
1 ;市十二屆人大三次會議副秘書長名單[N];湛江日報;2008年
相關(guān)博士學(xué)位論文 前3條
1 韓小雷;帶剛性連梁的雙肢剪力墻及其結(jié)構(gòu)控制性能的研究[D];華南理工大學(xué);1991年
2 車佳玲;FRC對角斜筋連梁及聯(lián)肢剪力墻抗震性能與設(shè)計方法研究[D];西安建筑科技大學(xué);2013年
3 楊忠;超高韌性水泥基復(fù)合材料構(gòu)件受剪性能試驗(yàn)研究[D];合肥工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 王春暉;半通縫連梁抗震性能數(shù)值模擬分析[D];青島理工大學(xué);2015年
2 王利強(qiáng);新型耗能連梁抗震性能研究[D];哈爾濱工業(yè)大學(xué);2015年
3 施唯;鋼筋混凝土連梁的破壞機(jī)制與損傷控制研究[D];中國地震局工程力學(xué)研究所;2015年
4 鐘海牛;桁架式鋼骨混凝土連梁抗震性能試驗(yàn)研究[D];廣西大學(xué);2015年
5 夏承柱;新型配筋形式小跨高比連梁抗震性能與抗剪承載力研究[D];中國礦業(yè)大學(xué);2015年
6 胡京亞;新型可更換耗能連梁設(shè)計方法研究[D];廣州大學(xué);2015年
7 孫亞;帶可更換鋼連梁的混合聯(lián)肢剪力墻抗震性能研究[D];清華大學(xué);2015年
8 賈俊杰;混凝土剪力墻連梁基于延性的抗震性能研究[D];鄭州大學(xué);2016年
9 韓鑫;高層剪力墻結(jié)構(gòu)中防屈曲約束支撐連梁不同布置對抗震性能影響的研究[D];長安大學(xué);2016年
10 李一康;含鋼率對改進(jìn)焊接箍筋鋼板—混凝土組合連梁的抗震性能研究[D];華北理工大學(xué);2016年
,本文編號:2188104
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2188104.html