天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 管理論文 > 城建管理論文 >

礦渣—水泥復合膠凝體系低溫水化特性研究

發(fā)布時間:2018-07-28 08:17
【摘要】:我國寒冷地區(qū)地域遼闊,包括了“三北”地區(qū)13個省、市、自治區(qū),占全國面積的50%以上,冬季時間長達3-6個月,因此,在寒冷地區(qū)冬季混凝土施工技術(shù)的研究顯得尤為重要。硅酸鹽水泥的水化放熱行為包括水化放熱速率和放熱量,其對混凝土的耐久性有很大影響;在堿性條件下,礦渣會發(fā)生水化反應,生成硅酸鈣凝膠和沸石類的水化產(chǎn)物,其形成的固體結(jié)構(gòu)十分致密。低溫下水泥水化模型的提出,為寒冷地區(qū)冬季混凝土的施工提供了理論支持。因此,研究礦渣-水泥復合膠凝材料體系在低溫下的水化規(guī)律,具有重大意義。本文重點研究礦渣-水泥復合膠凝材料體系在低溫下的水化規(guī)律,研究礦渣摻量、水化溫度等因素對復合膠凝材料體系水化放熱速率、水化放熱量、非蒸發(fā)水含量、力學性能及微觀結(jié)構(gòu)的影響。對礦渣-水泥復合膠凝材料體系低溫水化動力學參數(shù)進行計算,驗證并建立低溫復合膠凝材料體系水化反應的數(shù)學模型。研究結(jié)果表明,當水化溫度不變,隨著礦渣摻量的增加以及礦渣摻量不變,隨著水化溫度的降低,礦渣-水泥復合膠凝材料體系水化放熱速率與水化放熱量、抗壓與抗折強度、非蒸發(fā)水含量均呈現(xiàn)出下降的趨勢。水化溫度為-10℃時,礦渣摻量分別為0、10%、30%、50%,復合膠凝材料體系進入加速期的水化時間對比純硅酸鹽水泥體系,分別滯后了0.17h、0.43h、0.62h;另選取加速期,水化時間20h,水化溫度為5℃、0℃、-10℃,此時,礦渣摻量為50%的復合膠凝材料體系的水化放熱速率比純硅酸鹽水泥體系降低了25.77%、40.75%、43.25%;復合膠凝材料體系的非蒸發(fā)水含量隨著礦渣摻量的增加而降低,隨著齡期的延長而增加,摻加礦渣的復合膠凝材料體系非蒸發(fā)水量均低于純水泥凈漿體系。水化溫度為-10℃,水化齡期為28d的復合膠凝材料體系非蒸發(fā)水含量隨著礦渣摻量的增加,分別降低了11.79%、16.64%、45.38%。水化溫度為-10℃,礦渣摻量為30%的復合膠凝材料體系非蒸發(fā)水含量隨著齡期的增加,分別增加了83.87%、145.16%、]77.42%。隨著礦渣摻量的增加、水化溫度的降低,復合膠凝材料體系膠砂試件的抗壓、抗折強度呈現(xiàn)下降的趨勢。選取水化溫度為-10℃,水化齡期為28d,不同礦渣摻量復合膠凝材料體系膠砂試件的抗壓、抗折強度分別降低了12.96%、26.80%、34.58%及8.52%、24.03%、36.43%。根據(jù)Krstulovic-Dabic的水泥水化動力學模型,對水化反應的3個過程進行相應的表征,得到了低溫條件下復合膠凝材料體系的動力學參數(shù)K、n以及各個階段反應速率和反應度間的關(guān)系。通過計算獲取各個階段的反應速率曲線,可較好地對由量熱實驗數(shù)據(jù)繪制的復合膠凝材料體系實際水化速率da/dt曲線進行分段的模擬。通過計算獲得的動力學參數(shù),可以對低溫條件下復合膠凝材料體系不同反應階段水化反應程度進行預測。并建立了抗壓強度的數(shù)學模型,通過建立的一元線性回歸方程可以看出,不僅回歸方程非常顯著,R2值均大于99%,而且礦渣摻量對復合膠凝材料體系膠砂試件抗壓強度的影響極其顯著。利用SEM圖譜分析可看出,純水泥漿體中有大量生長良好的鈣礬石晶體產(chǎn)生,并且外形完整;同齡期摻加礦渣的水泥漿體中,鈣礬石晶體短小而纖細,外形不完整,試樣微觀結(jié)構(gòu)較為松散,導致抗壓強度降低;通過XRD研究可看出,水化齡期為3d,復合膠凝材料體系中CH所占晶體物質(zhì)的比例隨著礦渣摻量的增加而降低,這與非蒸發(fā)水含量值及抗壓強度值的變化規(guī)律是一致的。
[Abstract]:China's cold region has a vast territory, including 13 provinces in the "Three North" areas, cities and autonomous regions, which account for more than 50% of the country's area and winter time for up to 3-6 months. Therefore, the study of concrete construction technology in cold regions is particularly important in winter. The durability of soil has a great influence. Under the alkaline condition, the slag will be hydrated and produce the hydrated product of calcium silicate gel and zeolite. The formation of the solid structure is very dense. At low temperature, the cement hydration model is put forward to provide theoretical support for the construction of concrete in cold area in winter. Therefore, the slag cement compound adhesive is studied. The hydration law of the condensate system at low temperature is of great significance. This paper focuses on the hydration law of the slag cement composite cementitious material system at low temperature, and studies the effects of the amount of slag and the hydration temperature on the hydration heat rate, the hydration heat, the non evaporative water content, the mechanical properties and the microstructure of the composite cementitious material system. The dynamic parameters of the low temperature hydration of the slag cement composite cementitious material system are calculated, and the mathematical model of the hydration reaction of the composite cementitious material system at low temperature is verified and established. The results show that the slag cement composite is combined with the increase of the amount of slag and the amount of slag admixture, and the decrease of the hydration temperature. The hydration heat rate and the hydration heat, the compressive strength and the flexural strength, the non evaporative water content of the cementitious material system decreased. When the hydration temperature was -10 C, the slag content was 0,10%, 30%, 50% respectively. The hydration time of the compound cementitious material system entered the accelerating period compared to the pure Portland cement system, which lagged behind 0.17h, 0.43h, 0.62 respectively. H, in addition to the acceleration period, the hydration time is 20h, the hydration temperature is 5 C, 0 C and -10 C. At this time, the hydration heat rate of the composite cementitious material system with the slag content of 50% is 50% lower than that of the pure Portland cement system by 25.77%, 40.75%, 43.25%; the non evaporative water content of the composite cementitious material system decreases with the increase of the slag content, with the age of age. The non evaporation water content of the composite cementitious material mixed with slag is lower than that of pure cement paste system. The non evaporative water content of the composite cementitious material system with hydration age of 28d is -10 C and the amount of slag is increased by 11.79%, 16.64%, and 45.38%. hydration temperature is -10 C, and the slag content is 30%. The non evaporative water content in the cementitious material system increased by 83.87%, 145.16%, respectively, with the increase of the slag content and the decrease of the hydration temperature. The compressive strength of the mortar specimens of the composite cementitious material system was reduced. The hydration temperature was -10 C, the age of hydration was 28d, and the content of different slag was mixed. The compressive strength of the cementitious material system was reduced by 12.96%, 26.80%, 34.58% and 8.52%, 24.03%, and 36.43%., according to the Krstulovic-Dabic dynamic model of cement hydration, was used to characterize the 3 processes of hydration reaction, and the dynamic parameters of the composite cementitious material system under low temperature, K, N and each other, were obtained. The relationship between the rate of reaction and the degree of reactivity. By calculating the reaction rate curves of each stage, the actual hydration rate da/dt curve of the composite cementitious material system, drawn by the calorimetric data, can be simulated in a piecewise way. By calculating the obtained kinetic parameters, the composite cementitious material under low temperature conditions can be obtained. The degree of hydration reaction in different reaction stages is predicted and the mathematical model of compressive strength is established. Through the established linear regression equation, it is found that not only the regression equation is very significant, the R2 value is more than 99%, but the slag content has a very significant effect on the compressive strength of the composite cementitious material system. The use of SEM Atlas It can be seen that a large number of fine ettringite crystals are produced in the pure cement paste, and the shape is complete. In the cement slurry with the age of the slag, the crystal of ettringite is short and fine, the shape is incomplete and the microstructure is loose, which leads to the reduction of the compressive strength. The age of hydration is 3D and compound glue can be seen through the XRD study. The proportion of CH in the condensate system decreases with the increase of slag content, which is the same as that of the non evaporative water content and the compressive strength.
【學位授予單位】:沈陽建筑大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TU528

【相似文獻】

相關(guān)期刊論文 前10條

1 肖承漢;提高φ2.2m×7.5m礦渣磨產(chǎn)量和細度的措施[J];水泥工程;2003年06期

2 胡宏剛;黃擁軍;;淺談球磨機改造成超細礦渣磨[J];四川水泥;2006年05期

3 林振榮;張程博;楊友全;;摻加礦渣的土聚水泥的研究[J];21世紀建筑材料;2009年05期

4 王樾;張偉;;礦渣的活性激發(fā)劑[J];江蘇建材;2009年04期

5 侯磊;李金洪;王浩林;;礦渣磷酸鎂水泥的力學性能和水化機理[J];巖石礦物學雜志;2011年04期

6 賈青;耿輝;;淺談工業(yè)廢棄物礦渣在國內(nèi)外應用的研究現(xiàn)狀[J];科技資訊;2011年20期

7 譚玉春;礦渣活化技術(shù)[J];建材工業(yè)信息;1994年04期

8 吳承禎,劉淼,吳學權(quán),陳鍵;磨細礦渣對高性能混凝土性能的影響囿1摻加磨細礦渣的砂漿試驗[J];南京化工大學學報(自然科學版);1999年05期

9 丁鑄,張德成,賈元學,孫啟民,吳乃民;用礦渣制備調(diào)粒水泥的研究[J];山東建材學院學報;1999年01期

10 路陽;李根;謝雪科;何小芳;曹新鑫;;礦渣對水泥水化影響的研究進展[J];硅酸鹽通報;2013年12期

相關(guān)會議論文 前10條

1 蘭明章;王曉芳;;磨細礦渣的加工和應用[A];中國首屆商品粉煤灰及磨細礦渣加工與應用技術(shù)交流大會論文集[C];2003年

2 趙三銀;余其俊;喬飛;黃家琪;殷素紅;文梓蕓;古國榜;;堿激發(fā)碳酸鹽礦-礦渣膠凝材料復合作用及其機理的研究[A];第九屆全國水泥和混凝土化學及應用技術(shù)會議論文匯編(上卷)[C];2005年

3 胡勝哠;李秀萍;;礦渣高摻量制造礦渣硅酸鹽水泥的探討[A];華北地區(qū)硅酸鹽學會第八屆學術(shù)技術(shù)交流會論文集[C];2005年

4 王建福;楊全兵;;礦渣對凈漿早期開裂的影響[A];中國硅酸鹽學會混凝土水泥制品分會第七屆理事會議暨學術(shù)交流大會論文集[C];2005年

5 孫家瑛;黃成華;;礦渣鋼渣復合超量替代水泥高性能混凝土性能研究[A];高性能混凝土的研究與應用——第五屆全國高性能混凝土學術(shù)交流會論文[C];2004年

6 尹超男;蘆令超;王守德;李貴強;;礦渣對阿利特-硫鋁酸鋇鈣水泥水化及硬化漿體孔結(jié)構(gòu)的影響[A];中國硅酸鹽學會水泥分會首屆學術(shù)年會論文集[C];2009年

7 羅亞鳳;弓子成;丁慶軍;朱玉雪;苗強;;溫度對高摻量礦渣的水泥水化放熱性能的影響[A];2013年混凝土與水泥制品學術(shù)討論會論文集[C];2013年

8 任云鵬;張維鵬;盧崇劭;;MLK系列礦渣立磨開發(fā)[A];2009全國水泥立磨技術(shù)和裝備研討會文集[C];2009年

9 張同生;余其俊;韋江雄;宮晨琛;張平平;;;郀t礦渣在不同環(huán)境中的水化進程研究[A];中國硅酸鹽學會水泥分會首屆學術(shù)年會論文集[C];2009年

10 劉晨;顏碧蘭;王昕;江麗珍;肖忠明;;礦渣摻量對水泥抗凍性的影響[A];第十屆全國水泥和混凝土化學及應用技術(shù)會議論文摘要集[C];2007年

相關(guān)重要報紙文章 前3條

1 山東宏藝科技有限公司 陳新中;礦渣與熟料分別粉磨的意義[N];中國建材報;2009年

2 駐山東記者張運科 通訊員陳硯生;山東規(guī)模化高效利用礦渣資源帶動水泥鋼鐵行業(yè)發(fā)展[N];中國建材報;2010年

3 王扣華;礦渣水泥粉磨技術(shù)探討[N];中國建材報;2005年

相關(guān)博士學位論文 前4條

1 張慧莉;礦渣聚丙烯纖維混凝土性能研究[D];西北農(nóng)林科技大學;2010年

2 董剛;粉煤灰和礦渣在水泥漿體中的反應程度研究[D];中國建筑材料科學研究總院;2008年

3 劉仍光;水泥—礦渣復合膠凝材料的水化機理與長期性能[D];清華大學;2013年

4 代奎;礦渣粉煤灰混合膠凝體系研究[D];大慶石油學院;2009年

相關(guān)碩士學位論文 前10條

1 白云志;堿激發(fā)礦渣的力學性能以及與微觀表征的相關(guān)性研究[D];青島理工大學;2016年

2 余健;鈣溶蝕條件下礦渣-水泥基材料耐久性退化過程試驗與分析研究[D];南京理工大學;2016年

3 鐘琪;熱活化煤矸石—礦渣—粉煤灰地質(zhì)聚合物性能研究[D];遼寧工程技術(shù)大學;2013年

4 王寧;礦渣—水泥復合膠凝體系低溫水化特性研究[D];沈陽建筑大學;2014年

5 郭麗萍;大摻量磨細礦渣高性能砼疲勞性能研究與疲勞方程的建立[D];東南大學;2005年

6 夏婧;堿礦渣混凝土配合比設計研究[D];重慶大學;2013年

7 趙鵬;礦渣—水泥體系顆粒群特征及其早期性能研究[D];西安建筑科技大學;2006年

8 程剛;礦渣免蒸磚的研究[D];武漢理工大學;2011年

9 栗靜靜;磷礦渣摻合料對混凝土性能影響的研究[D];重慶大學;2007年

10 李倩;鋼渣—礦渣基膠凝材料的研究[D];河北科技大學;2012年

,

本文編號:2149478

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2149478.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7686b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com