基于離散單元法的機(jī)械式挖掘機(jī)工作阻力模擬
[Abstract]:Mining process of mining mechanical excavator is a complicated physical process. Mining resistance of ore rock is one of the main parameters of excavator design. It is directly related to the structure, mechanical strength, machine weight, transmission mode and power selection of excavator. The accuracy of this index plays an important role in the design of excavator. At present, the excavating resistance of mechanical single bucket excavator in our country is still determined by the formula put forward by the former Soviet Union in 1950s. The main factors affecting excavation resistance are: soil sample type, bucket tooth shape and blasting ore fragmentation. Taking mine 55m3 mechanical excavator as an example, the blasting rock with the same soil sample, the same bucket shape and different pieces of rock is taken as the research object. The discrete element theory is used to simulate the blasting rock by EDEM software. The weathered rock after blasting with different degrees of fragmentation is simulated as a spherical discrete element. The size of three groups of particles is analyzed, and it is considered that the ore heap model and bucket model are established according to normal distribution. The resistance curves of bucket along X direction Y direction and Z direction are obtained in the excavation process. The maximum tangential excavation resistance and the maximum normal excavation resistance are obtained by calculation, and the time when the bucket appears and the excavation thickness at this time are obtained. The results show that the maximum tangential excavation resistance and the maximum normal excavation resistance increase with the increase of the block size, and the total rotation angle of the bucket rod is approximately the same as that of the mining thickness when the maximum excavation resistance occurs. When the ore diameter is mainly concentrated at (1.3-1.6) m, the maximum tangential resistance error is 2.63, the maximum normal resistance error is 2.14, the lifting force error is 2.98 and the thrust pressure error is 3.48. When the ore diameter is mainly concentrated at (1.0 ~ 1.3) m, the maximum tangential resistance error is 13.98, the maximum normal resistance error is 12.2222, the lifting force error is 9.53 and the pressure error is 13.69. The above errors are all acceptable in engineering, so the discrete element method can be used as a research method to study the excavation resistance in the process of mining.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TU621
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林貴瑜;李愛峰;李奎賢;;確定挖掘阻力關(guān)鍵因素值與方法的研究[J];東北大學(xué)學(xué)報(自然科學(xué)版);2010年12期
2 林就發(fā);土壤切削[J];工程機(jī)械;1965年02期
3 安國明;反鏟斗挖掘土壤實(shí)驗(yàn)研究與挖掘阻力計(jì)算(上)[J];建筑機(jī)械化;2005年04期
4 陳進(jìn);洪昌銀;;轉(zhuǎn)斗挖掘阻力包絡(luò)曲線的數(shù)學(xué)表達(dá)式[J];重慶建筑工程學(xué)院學(xué)報;1985年01期
5 陳進(jìn);洪昌銀;;轉(zhuǎn)斗挖掘阻力包絡(luò)曲線的數(shù)學(xué)表達(dá)式[J];機(jī)械設(shè)計(jì);1986年03期
6 靖德權(quán),閻喜仁;正鏟挖掘軌跡與挖掘阻力分析[J];工程機(jī)械;1988年02期
7 安國明;反鏟斗挖掘土壤實(shí)驗(yàn)研究與挖掘阻力計(jì)算(下)[J];建筑機(jī)械化;2005年05期
8 王久聰,李奎賢,張輝;挖掘機(jī)挖掘阻力的試驗(yàn)研究[J];工程機(jī)械;1992年11期
9 林貴瑜;李愛峰;肖斌;任舉鵬;;機(jī)械式單斗挖掘機(jī)挖掘阻力模擬[J];礦山機(jī)械;2014年04期
10 陳進(jìn);李維波;張石強(qiáng);鐘春健;;大型礦用正鏟液壓挖掘機(jī)挖掘阻力試驗(yàn)研究[J];中國機(jī)械工程;2008年05期
相關(guān)博士學(xué)位論文 前1條
1 韋寶琛;巨型電鏟新型工作機(jī)構(gòu)性能研究[D];上海交通大學(xué);2012年
相關(guān)碩士學(xué)位論文 前1條
1 邢歡歡;基于離散單元法的機(jī)械式挖掘機(jī)工作阻力模擬[D];東北大學(xué);2014年
,本文編號:2140478
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2140478.html