側向點擾動下高應力巖石的破壞機制研究
[Abstract]:At present, the failure mechanism of high stress rock under local lateral disturbance is still lacking. In this paper, the lateral disturbance test of high stress rock is carried out by using the self developed true triaxial electro-hydraulic servo mutagenesis (disturbance) test system. The failure mechanism and acoustic emission characteristics of rock under different static load conditions are studied. The experimental results are verified by numerical simulation with PFC3D software. In addition, the crack development and failure mechanism of high stress rock under different disturbance amplitude are analyzed. The results of this paper provide theoretical and technical support for revealing the mechanism of rock burst and improving the efficiency of deep rock drilling. The main contents and results are as follows: 1. Using the true triaxial electro-hydraulic servo mutagenesis (disturbance) test system, the lateral disturbance failure tests of 100mm 脳 100mm 脳 100mm large size granite specimens under different static loads are carried out. Through the monitoring of PCI-2 acoustic emission system, it is found that the maximum energy event of acoustic emission of high-stress rock under dynamic disturbance generally lags behind the peak value of disturbance and occurs in the dynamic unloading section, and with the increase of static load, The maximum energy event of acoustic emission has a tendency to occur in advance. And the number of large energy events increased by 0.2. The damage evaluation based on elastic wave velocity variation and the analysis of acoustic emission RA value (acoustic emission impact rise time / amplitude) found that, The disturbed failure modes of rock under different static loads are different. At low static load, the disturbance only triggers a small amount of shear cracks and results in local shear failure of rock near disturbance, and at higher static load, the disturbance triggers both shear cracks and tensile cracks. The appearance of a large number of tensile cracks eventually leads to the whole collapse failure of the rock. 3. PFC3D is used to simulate the rock failure test under the same disturbance and different static loads, and the results are consistent with the test results. At the same time, the rock failure test under the same static load and different amplitude of dynamic disturbance is simulated. The simulation results show that the fracture growth rate of high stress rock under lateral disturbance is proportional to the disturbance amplitude, and the crack propagation depth can be increased by increasing the disturbance amplitude. However, the fracture is mainly distributed on the disturbed side of the specimen, and the fracture penetration is not strong, at the same time, Increasing the amplitude of disturbance can increase the degree of fracture development at the end of disturbance. 4. Increasing the amplitude of dynamic disturbance is helpful to improve the effect of disturbance rock breaking, but its effect is limited, the rock breaking effect of continuous disturbance is higher than that of single disturbance. But improving static load has remarkable effect on dynamic disturbance rock breaking.
【學位授予單位】:中南大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TU45
【共引文獻】
相關期刊論文 前10條
1 許中林;李國祿;董天順;劉金海;王海斗;康嘉杰;;聲發(fā)射信號分析與處理方法研究進展[J];材料導報;2014年09期
2 朱星;許強;鄧茂林;陳龍;周建斌;;巖石次聲濾波處理新技術——Sallen-Key數(shù)學模型[J];煤炭學報;2013年08期
3 李慧民;李振雷;何榮軍;閆玉彪;;基于粒子群算法和BP神經(jīng)網(wǎng)絡的沖擊危險性評估[J];采礦與安全工程學報;2014年02期
4 夏冬;楊天鴻;常宏;;含水煤巖損傷破壞過程中聲發(fā)射特征的研究[J];金屬礦山;2014年06期
5 聶柏松;沈振中;邱莉婷;任華春;王瑞;張騰蛟;;雙安全系數(shù)動態(tài)局部強度折減法在邊坡穩(wěn)定分析中的應用[J];水電能源科學;2014年04期
6 陳祥榮;張春生;朱煥春;曾新華;杜效鵠;張鵬;劉寧;;深埋隧洞圍巖高應力損傷破壞機理探討[J];水力發(fā)電;2014年07期
7 彭俊;榮冠;王小江;周創(chuàng)兵;;完整巖石Hoek-Brown屈服準則參數(shù)m_i的經(jīng)驗模型[J];中南大學學報(自然科學版);2013年11期
8 張志鎮(zhèn);高峰;尚曉吉;;Rock burst proneness prediction by acoustic emission test during rock deformation[J];Journal of Central South University;2014年01期
9 彭俊;榮冠;周創(chuàng)兵;蔡明;彭坤;;一種基于GSI弱化的應變軟化模型[J];巖土工程學報;2014年03期
10 周子龍;李國楠;寧樹理;杜坤;;側向擾動下高應力巖石的聲發(fā)射特性與破壞機制[J];巖石力學與工程學報;2014年08期
相關博士學位論文 前9條
1 高天寶;煤體受迫振動響應及破壞特征實驗研究[D];中國礦業(yè)大學(北京);2013年
2 杜坤;真三軸卸載下深部巖體破裂特性及誘發(fā)型巖爆機理研究[D];中南大學;2013年
3 孫博;高埋深地下洞室圍巖破壞機理及其穩(wěn)定性的細觀力學研究[D];天津大學;2012年
4 蔡建;Lamb波損傷成像中的頻散補償方法研究[D];南京航空航天大學;2012年
5 程騁;應變巖爆的巖體剛度效應研究[D];中國礦業(yè)大學(北京);2013年
6 姚成林;深埋長隧洞巖爆災害機理及判據(jù)研究[D];中國地質(zhì)大學(北京);2014年
7 董家興;高地應力條件下大型地下洞室圍巖變形破壞機制研究[D];中國地質(zhì)大學;2014年
8 趙術江;新疆沙吉海煤礦復合型軟巖破壞機理及支護對策研究[D];中國礦業(yè)大學(北京);2014年
9 馬高;FRP加固震損RC框架抗震性能試驗與損傷評價研究[D];哈爾濱工業(yè)大學;2013年
,本文編號:2137193
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2137193.html