基于太陽能的相變儲(chǔ)能新風(fēng)高效換熱系統(tǒng)研究
本文選題:太陽能新風(fēng)系統(tǒng) + 熱管; 參考:《沈陽建筑大學(xué)》2014年碩士論文
【摘要】:嚴(yán)寒地區(qū)冬季室外溫度極低,為了保持室內(nèi)采暖溫度,人們一直在提高建筑的密封性,因此室內(nèi)通風(fēng)換氣受到嚴(yán)格限制,如果不依靠開窗通風(fēng),室內(nèi)空氣品質(zhì)會(huì)越來越差。本文對沈陽15個(gè)小區(qū)進(jìn)行調(diào)研的統(tǒng)計(jì)結(jié)果顯示,人們希望冬季室內(nèi)每天都能保持通風(fēng)換氣,改善屋內(nèi)的空氣品質(zhì)。目前,太陽能新風(fēng)技術(shù)與相變儲(chǔ)能技術(shù)的聯(lián)合應(yīng)用在建筑節(jié)能和暖通空調(diào)領(lǐng)域已經(jīng)成為一個(gè)熱點(diǎn)問題,太陽能新風(fēng)和相變儲(chǔ)能熱集成技術(shù)不僅可以降低建筑能耗還能夠改善室內(nèi)熱環(huán)境,提高熱舒適性。本文在相變材料與熱管技術(shù)的集成應(yīng)用基礎(chǔ)上,設(shè)計(jì)了太陽能相變儲(chǔ)能新風(fēng)高效換熱系統(tǒng),并進(jìn)行了分析和研究。在日照充足條件下,新風(fēng)被太陽能集熱器加熱后直接送入室內(nèi),此時(shí)系統(tǒng)以太陽能作為主要熱源將剩余熱量通過熱管等溫傳入相變蓄熱器;當(dāng)太陽輻射量不足,新風(fēng)高效換熱器送風(fēng)口處空氣溫度達(dá)不到標(biāo)準(zhǔn)送風(fēng)溫度時(shí),將主要熱源由太陽能轉(zhuǎn)換為相變儲(chǔ)能蓄熱器繼續(xù)加熱新風(fēng)。在系統(tǒng)設(shè)計(jì)中,熱管作為改善相變材料導(dǎo)熱性能的介質(zhì),提高空氣與蓄熱器的換熱效率。熱管的引入解決了太陽能集熱板的熱量浪費(fèi)問題,改善了相變材料導(dǎo)熱性能、換熱效率等缺點(diǎn)。對熱管進(jìn)行了特殊定制,并進(jìn)行了分析和測試,結(jié)果表明定制的熱管性能良好,滿足試驗(yàn)要求。對相變材料進(jìn)行遴選,選取了癸酸為本試驗(yàn)的相變蓄熱材料。分析了基于太陽能的相變儲(chǔ)能新風(fēng)高效換熱系統(tǒng)各部分間的換熱情況,用網(wǎng)格劃分軟件對系統(tǒng)各部分進(jìn)行了三維網(wǎng)格劃分,利用模擬軟件對太陽能空氣集熱器的換熱過程、相變儲(chǔ)能蓄熱器的蓄熱過程和新風(fēng)高效換熱器內(nèi)部的放熱過程(包括相變儲(chǔ)能蓄熱器的放熱過程)進(jìn)行了模擬分析,通過熱量及相態(tài)變化總結(jié)換熱規(guī)律。搭建了基于太陽能的相變儲(chǔ)能新風(fēng)高效換熱系統(tǒng)并集成于住宅房間,采集了太陽能集熱板不同高度處的溫度數(shù)據(jù),驗(yàn)證了熱管的單向有效性并能夠提高系統(tǒng)整體熱利用效率;采集了蓄熱器內(nèi)不同高度處的溫度數(shù)據(jù),結(jié)果表明了熱管的高效性能夠縮短相變蓄熱材料的蓄熱時(shí)間;采集了換熱器內(nèi)不同位置處溫度數(shù)據(jù),驗(yàn)證了熱管技術(shù)的引入成功的改善了系統(tǒng)的換熱效率,延長了系統(tǒng)的通風(fēng)換氣時(shí)間。將模擬換熱過程與試驗(yàn)換熱過程進(jìn)行了對比,研究結(jié)果顯示熱管技術(shù)的引入能夠提高系統(tǒng)換熱效率,延長室內(nèi)的通風(fēng)換氣時(shí)間。相對普通新風(fēng)系統(tǒng)而言,本課題所研究的基于太陽能的相變儲(chǔ)能新風(fēng)高效換熱系統(tǒng)在節(jié)能效果和舒適度方面有明顯優(yōu)勢,對能源的可持續(xù)發(fā)展具有重要意義。
[Abstract]:The outdoor temperature is very low in cold winter. In order to keep the indoor heating temperature, people have been improving the sealing of the building, so the indoor ventilation is strictly restricted. If we do not rely on window ventilation, the indoor air quality will become worse and worse. In this paper, the statistical results of 15 residential areas in Shenyang show that people hope that the indoor ventilation and ventilation can be maintained every day in winter to improve the air quality in the house. At present, the joint application of solar fresh air technology and phase change energy storage technology in the field of building energy conservation and HVAC has become a hot issue. Solar fresh air and phase change energy storage technology can not only reduce building energy consumption, but also improve indoor thermal environment and thermal comfort. Based on the integrated application of phase change material and heat pipe technology, an efficient heat transfer system of phase change fresh air for solar energy storage has been designed and analyzed in this paper. Under sufficient sunshine, the fresh air is heated by a solar collector and directly sent indoors. At this time, the system uses solar energy as the main source of heat to transmit the remaining heat through the heat pipe isothermal to the phase change accumulator; when the solar radiation is insufficient, When the air temperature at the outlet of the high-efficiency fresh air heat exchanger does not reach the standard air temperature, the main heat source is converted from solar energy to phase change energy storage accumulator to heat the fresh air. In the system design, the heat pipe is used as the medium to improve the thermal conductivity of phase change material, and the heat transfer efficiency of air and accumulator is improved. The introduction of heat pipe solves the problem of heat waste of solar collector and improves the thermal conductivity and heat transfer efficiency of phase change materials. The heat pipe has been specially customized and analyzed and tested. The results show that the customized heat pipe has good performance and meets the test requirements. The phase change material was selected and sebacic acid was selected as the phase change heat storage material. The heat transfer between various parts of phase change fresh air heat transfer system based on solar energy is analyzed. The three dimensional grid division software is used to divide each part of the system, and the heat transfer process of solar air collector is simulated by means of simulation software. The heat storage process of the phase change energy accumulator and the exothermic process inside the high-efficiency fresh air heat exchanger (including the heat release process of the phase change energy storage accumulator) are simulated and analyzed. The heat transfer law is summed up by the change of heat and phase state. The high efficiency heat transfer system of phase change energy storage based on solar energy is built and integrated into the residential room. The temperature data of solar collector at different heights are collected. The unidirectional efficiency of heat pipe is verified and the overall thermal utilization efficiency of the system is improved. The temperature data at different heights in the accumulator are collected. The results show that the high efficiency of the heat pipe can shorten the storage time of the phase change heat storage material, and the temperature data at different positions in the heat exchanger are collected. It is verified that the introduction of heat pipe technology can improve the heat transfer efficiency of the system and prolong the ventilation and air exchange time of the system. The simulated heat transfer process is compared with the experimental heat transfer process. The results show that the introduction of heat pipe technology can improve the heat transfer efficiency of the system and prolong the ventilation and air exchange time in the room. Compared with ordinary fresh air system, the phase change fresh air heat transfer system based on solar energy has obvious advantages in energy saving and comfort, which is of great significance to the sustainable development of energy.
【學(xué)位授予單位】:沈陽建筑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU83;TK519
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張東,周劍敏,吳科如;相變儲(chǔ)能復(fù)合材料的研究和應(yīng)用[J];節(jié)能與環(huán)保;2004年01期
2 王永川,陳光明,張海峰,洪峰;相變儲(chǔ)能材料及其實(shí)際應(yīng)用[J];熱力發(fā)電;2004年11期
3 郭茶秀;張務(wù)軍;魏新利;;新型相變儲(chǔ)能設(shè)備的強(qiáng)化傳熱研究[J];冶金能源;2008年01期
4 王彥敏;;相變儲(chǔ)能技術(shù)在采暖空調(diào)領(lǐng)域的應(yīng)用研究[J];科技資訊;2009年30期
5 王海鷗;褚曉東;姚有為;唐國翌;翁端;;相變儲(chǔ)能微囊的制備及性能研究[J];太陽能學(xué)報(bào);2010年02期
6 李啟金;姜蔥蔥;李國忠;;石膏基相變儲(chǔ)能材料的性能研究[J];墻材革新與建筑節(jié)能;2011年11期
7 張建軍;;探討相變儲(chǔ)能建筑材料的應(yīng)用技術(shù)進(jìn)展[J];門窗;2012年08期
8 李書進(jìn);蔣曉曙;劉燕;厲見芬;;多孔相變儲(chǔ)能顆粒的制備及蓄熱性能研究[J];新型建筑材料;2012年10期
9 張永信;李舒宏;操愷;李獻(xiàn)亮;顧維維;;太陽能相變儲(chǔ)能水箱釋能性能的數(shù)值模擬[J];儲(chǔ)能科學(xué)與技術(shù);2013年04期
10 史巍;艾斌;侯景鵬;;復(fù)合相變儲(chǔ)能砂漿性能實(shí)驗(yàn)研究[J];硅酸鹽通報(bào);2014年05期
相關(guān)會(huì)議論文 前10條
1 黃凱良;馮國會(huì);劉馨;;相變儲(chǔ)能房間節(jié)能技術(shù)研究應(yīng)用進(jìn)展及拓展?jié)摿A];全國暖通空調(diào)制冷2010年學(xué)術(shù)年會(huì)資料集[C];2010年
2 趙杰;唐炳濤;張淑芬;楊振宇;賈超;;相變儲(chǔ)能材料在工業(yè)余熱回收中的應(yīng)用[A];中國化工學(xué)會(huì)2009年年會(huì)暨第三屆全國石油和化工行業(yè)節(jié)能節(jié)水減排技術(shù)論壇會(huì)議論文集(上)[C];2009年
3 高U,
本文編號(hào):2093630
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2093630.html