基于光纖光柵的高陡邊坡及危巖落石監(jiān)測技術(shù)與應(yīng)用研究
本文選題:邊坡工程 + 危巖落石防護(hù); 參考:《武漢理工大學(xué)》2014年博士論文
【摘要】:邊坡工程是交通設(shè)施建設(shè)中常見的土木工程形式,高陡邊坡的失穩(wěn)和崩塌落石等地質(zhì)災(zāi)害嚴(yán)重威脅著交通運輸安全。隨著我國高速公路、高速鐵路的快速發(fā)展,高陡邊坡的安全問題越來越突出,開展高陡邊坡的在線安全監(jiān)測與預(yù)警迫在眉睫。目前邊坡安全監(jiān)測大都采用傳統(tǒng)的電磁類傳感和儀器,這類設(shè)備不具備在線監(jiān)測以及抗自然界電磁干擾等能力。而基于光纖光柵技術(shù)的傳感器具備電磁類傳感無法比擬的技術(shù)優(yōu)勢:其光信號可遠(yuǎn)距離傳輸、具有抗雷擊等電磁襲擾、可串接復(fù)用等,這些優(yōu)勢特別適用于野外惡劣環(huán)境下的工程健康監(jiān)測。 本文在中國鐵路總公司(原國家鐵道部)和中鐵二院工程集團(tuán)、國家自然科學(xué)基金委等重大基金的支持下,以高陡邊坡和危巖落石為研究對象,重點研究其安全運營中重要、關(guān)鍵物理量的光纖光柵傳感安全監(jiān)測新原理、新方法和新技術(shù),注重理論設(shè)計與工程實際應(yīng)用緊密結(jié)合,將提出的監(jiān)測新原理和方法以及研制的光纖光柵傳感器應(yīng)用于實際邊坡工程現(xiàn)場和落石沖擊試驗現(xiàn)場。 在邊坡安全監(jiān)測方面,通過建立邊坡模型并開展離心加速變形試驗,研究了邊坡的變形失穩(wěn)特征和機理,在此理論研究基礎(chǔ)上,針對邊坡內(nèi)部變形的特殊需求,提出了一種通過監(jiān)測埋入到坡體內(nèi)部的柔性桿的變形反演出邊坡內(nèi)部變形特征的測量方法,對該方法進(jìn)行了傳感器模型的試驗驗證。針對傳統(tǒng)的光纖光柵錨桿測力方法存在的操作不便且無法標(biāo)定等缺陷,研制了一種新型光纖光柵錨桿測力計;根據(jù)邊坡表面位移監(jiān)測要求,研制并開發(fā)出一種斜面結(jié)構(gòu)的光纖光柵位移傳感器,并通過工程實際驗證了這些傳感器及儀表的有效性。 采用ANSYS顯式動力學(xué)分析了防護(hù)網(wǎng)受落石沖擊過程,研究了危巖落石防護(hù)網(wǎng)的受力變形特征和光纖光柵傳感測量方法與實施技術(shù)。根據(jù)數(shù)值分析結(jié)果,提出了一種溫度自補償?shù)睦鞲修D(zhuǎn)換彈性結(jié)構(gòu)體。在理論分析的基礎(chǔ)上,基于該彈性體制造了兩種量程的光纖光柵拉力傳感器。此外,根據(jù)防護(hù)網(wǎng)振動沖擊監(jiān)測要求,,研制了一種增敏結(jié)構(gòu)的光纖光柵振動傳感器,以及一種全金屬封裝的光纖光柵振動傳感器,并在工程現(xiàn)場應(yīng)用。 研究過程中,將理論設(shè)計與工程實際應(yīng)用緊密結(jié)合,對吊水巖邊坡的內(nèi)部變形長期在線監(jiān)測進(jìn)行了研究,引入了一種變形數(shù)據(jù)處理與分析方法。通過對吊水巖邊坡兩個光纖光柵變形監(jiān)測點幾個月的數(shù)據(jù)利用該方法處理,得出該吊水沿邊坡處于非穩(wěn)定的加速變形狀態(tài)。將光纖光柵位移傳感器應(yīng)用于吊水巖大橋的伸縮縫位移監(jiān)測,傳感器長期工作性能穩(wěn)定,監(jiān)測結(jié)果與實際情況一致。同時,開展了貴廣鐵路某邊坡的錨桿應(yīng)力長期監(jiān)測,獲得了錨桿不同長度處的應(yīng)力變化情況。同時驗證了研究工作的可靠和有效性。 將光纖光柵拉力傳感器、振動傳感器以及應(yīng)變光柵應(yīng)用于落石沖擊試驗中,有效的獲得了整個試驗過程中鋼絲繩拉力和鋼柱應(yīng)變的動態(tài)響應(yīng)過程監(jiān)測數(shù)據(jù),監(jiān)測結(jié)果與防護(hù)網(wǎng)的動力學(xué)有限元分析結(jié)果吻合。此外,根據(jù)防護(hù)網(wǎng)的沖擊數(shù)值模擬和兩次現(xiàn)場試驗結(jié)果,提出了五種落石沖擊判別響應(yīng)模式,對落石沖擊判別監(jiān)測具有重要的實際意義。
[Abstract]:Slope engineering is a common civil engineering form in the construction of traffic facilities. The geological disasters such as instability of high steep slope and rockfall and rockfall threaten the safety of traffic and transportation seriously. With the rapid development of highway and high-speed railway in China, the safety problems of high and steep slopes are becoming more and more prominent, and the online safety monitoring and early warning of high and steep slopes is forced to be carried out. At present, most of slope safety monitoring uses traditional electromagnetic sensors and instruments. This kind of equipment does not have the ability of on-line monitoring and resistance to natural electromagnetic interference. And the sensor based on Fiber Bragg grating technology has the advantages that electromagnetic sensing can not compare: its optical signal can be transmitted in a long distance, and it has anti lightning strike and other electromagnetic attacks. These advantages are especially suitable for engineering health monitoring in harsh environment.
With the support of major funds such as China Railway General Corporation (former national railway ministry), the second Institute of China Railway and the National Natural Science Foundation of China and the National Natural Science Foundation of China, high steep slope and rockfall are taken as the research object. The new principle, new method and new technology of optical fiber optic grating sensing, which are important and key physical quantities in safety operation, are emphatically studied. The heavy theoretical design is closely combined with the practical application of the engineering. The new monitoring principles and methods proposed and the developed fiber grating sensors are applied to the actual site of the slope engineering and the site of the rockfall impact test.
In the side slope safety monitoring, by establishing the slope model and carrying out the centrifuge acceleration deformation test, the deformation instability characteristics and mechanism of the slope are studied. On the basis of this theory, a kind of deformation of the flexible bar which monitors the deformation of the slope inside the side of the slope is put forward in view of the special requirement of the internal deformation of the slope. A new type of fiber Bragg grating bolt dynamometer has been developed to develop and develop a kind of optical fiber light of the slope structure according to the requirement of the surface displacement monitoring of the slope. The grid displacement sensor is verified by engineering practice and the effectiveness of these sensors and instruments is verified.
The ANSYS dynamic analysis is used to analyze the impact process of the rockfall on the protective net. The characteristics of the stress and deformation of the rockfall protection network and the sensing method and the implementation technology of the fiber Bragg grating are studied. Based on the results of the numerical analysis, a self compensated tension sensing transfer elastic structure is proposed. Based on the theoretical analysis, the projectile is based on the theory analysis. Two kinds of fiber Bragg grating tension sensors are manufactured by the sex body. In addition, a fiber Bragg grating vibration sensor with an sensitized structure is developed and a kind of all metal package fiber grating vibration sensor is developed and applied to the engineering site.
In the course of the study, the theory design and the practical application of the engineering are closely combined. The long-term on-line monitoring of the internal deformation of the suspended rock slope is studied. A deformation data processing and analysis method is introduced. By using this method to deal with the two fiber Bragg grating deformation monitoring points of the hanging water rock slope for several months, the boundary of the hanging water side is obtained. The fiber Bragg grating displacement sensor is applied to the displacement monitoring of the expansion joint of the suspension bridge. The long-term performance of the sensor is stable and the monitoring results are consistent with the actual conditions. At the same time, the long-term monitoring of the anchor stress of a slope in the Guiyang Guangzhou railway is carried out, and the stress changes at different lengths of the bolt are obtained. At the same time, it verifies the reliability and effectiveness of the research work.
The fiber grating tension sensor, the vibration sensor and the strain grating are applied to the rockfall impact test. The monitoring data of the dynamic response of the wire rope tension and the steel column strain during the whole test process are effectively obtained. The monitoring results are in agreement with the dynamic finite element analysis results of the protective net. In addition, the impact values of the protective net are calculated. Based on the results of simulation and two field tests, five kinds of rockfall impact discrimination models are proposed, which are of great practical significance for discriminating and monitoring rockfall impact.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:P642.2;TU196
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉勝春;張頂立;張成平;;高速鐵路路基與邊坡結(jié)構(gòu)安全光纖傳感監(jiān)測試驗[J];北京交通大學(xué)學(xué)報;2011年04期
2 張東生;李微;郭丹;胡軍;羅裴;姜德生;;基于光纖光柵振動傳感器的橋梁索力實時監(jiān)測[J];傳感技術(shù)學(xué)報;2007年12期
3 王廣龍;馮麗爽;劉惠蘭;張春熹;滕莉;;基于FBG的新型加速度計研究[J];傳感技術(shù)學(xué)報;2008年03期
4 姜德生,左軍,信思金,梁磊,南秋明;光纖Bragg光柵傳感器在水布埡工程錨桿上的應(yīng)用[J];傳感器技術(shù);2005年01期
5 王寶軍;李科;施斌;魏廣慶;;邊坡變形的分布式光纖監(jiān)測模擬試驗研究[J];工程地質(zhì)學(xué)報;2010年03期
6 姜德生,何偉;光纖光柵傳感器的應(yīng)用概況[J];光電子·激光;2002年04期
7 王俊杰;姜德生;梁宇飛;付曉紅;劉勝春;黃俊斌;;差動式光纖Bragg光柵土壓計及其溫度特性的研究[J];光電子.激光;2007年04期
8 周紅;喬學(xué)光;李娟妮;白燕;;用于光纖光柵封裝的環(huán)氧膠粘劑納米改性研究[J];光電子.激光;2009年05期
9 李玉龍;張華;馮艷;彭剛;;A plating method for metal coating of fiber Bragg grating[J];Chinese Optics Letters;2009年02期
10 翁銀燕;喬學(xué)光;馮忠耀;忽滿利;張敬花;楊揚;;Compact FBG diaphragm accelerometer based on L-shaped rigid cantilever beam[J];Chinese Optics Letters;2011年10期
相關(guān)博士學(xué)位論文 前2條
1 張常亮;邊坡穩(wěn)定性三維極限平衡法研究[D];長安大學(xué);2008年
2 李杰燕;高低溫環(huán)境下光纖傳感的傳感特性及相關(guān)技術(shù)研究[D];武漢理工大學(xué);2013年
本文編號:2013259
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2013259.html