天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 管理論文 > 城建管理論文 >

基于便攜式腦—機接口的智能家電控制系統(tǒng)研究

發(fā)布時間:2018-06-12 03:09

  本文選題:腦-機接口 + 穩(wěn)態(tài)視覺誘發(fā)電位 ; 參考:《天津職業(yè)技術(shù)師范大學(xué)》2014年碩士論文


【摘要】:電極在頭皮表面收集得到的腦電信號(Electroencephalogram,EEG),可以被理解為是神經(jīng)元電生理活動的總體響應(yīng),人的認(rèn)知、意識等活動形態(tài)和腦電信號具有很大的關(guān)聯(lián),存在差別的意識活動能夠通過對腦電信號處理分析出來,由此可以形成一種獨立于大腦外周神經(jīng)和肌肉正常輸出通道的通訊控制系統(tǒng),即腦-機接口(Brain-Computer Interface,BCI)。視覺誘發(fā)電位(VEP)是枕葉皮層對視覺刺激產(chǎn)生的反應(yīng),作為一種分析和提取較為方便的腦電信號,常常作為控制系統(tǒng)的輸入信號;谀X-機接口的智能家電系統(tǒng),是針對傳統(tǒng)的智能家居概念提出來的,在原有的技術(shù)基礎(chǔ)上將腦-機接口技術(shù)引入其中,可以解決殘疾人的獨立生活和康復(fù)治療等問題;诒銛y式腦-機接口的智能家電控制系統(tǒng)主要由腦電采集模塊、數(shù)據(jù)分析模塊、指令轉(zhuǎn)化模塊、指令傳輸網(wǎng)絡(luò)和外部設(shè)備控制等部分組成,其中對于腦電數(shù)據(jù)的分析精度和速度是研究的重點。 本文利用視覺誘發(fā)電位設(shè)計了一套僅使用腦電控制的智能家電系統(tǒng),不僅可以對穩(wěn)態(tài)視覺誘發(fā)電位(Steady-state visual evoked potentials, SSVEP)信號實時的采集分析處理,還能將其轉(zhuǎn)換為對應(yīng)的控制命令,達到無需肢體語言控制智能家電的目的。系統(tǒng)主要分為兩大部分:基于DSP平臺的腦電信號實時處理器和基于Zigbee無線網(wǎng)絡(luò)搭建的智能家電裝置。采用TI2000系列DSPTMS320F2812芯片,借助DSP高速、低功耗的特點,實現(xiàn)對SSVEP的數(shù)字濾波、特征提取以及分類,最后將特征信號轉(zhuǎn)化為控制命令從而控制無線網(wǎng)絡(luò)節(jié)點上的智能家電裝置。在CCS3.3軟件中利用C語言對TMS320F2812芯片進行算法編程,保證系統(tǒng)能夠?qū)SVEP進行有效采集處理。Zigbee無線網(wǎng)絡(luò)控制的智能家電裝置系統(tǒng)的開發(fā)主要在IAR810軟件上,實現(xiàn)對控制命令的準(zhǔn)確發(fā)送和家電裝置的控制。 通過對基于SSVEP的智能家電控制系統(tǒng)進行了在線實驗驗證,并與搭建在上位機LabVIEW平臺上的腦電處理裝置相對比,在處理速度上DSP腦電處理平臺處理單個任務(wù)指令的時間比傳統(tǒng)的上位機處理平均提高了約0.98%;贒SP的處理平臺具有可移動性和便攜性,結(jié)合新的物聯(lián)網(wǎng)智能家居技術(shù)的開發(fā),能夠更好地實現(xiàn)了腦電控制家電裝置,保證了系統(tǒng)的可靠性和便攜性。
[Abstract]:Electroencephalogram-EEGG, which is collected by electrodes on the scalp surface, can be understood as the overall response of neurons to electrophysiological activities, and the patterns of activities such as human cognition and consciousness have a great relationship with EEG signals. Different conscious activities can be analyzed by processing EEG signals, thus forming a communication control system independent of the normal output channels of the peripheral nerves and muscles of the brain, that is, Brain-Computer Interface (Brain-Computer Interface), Brain-Computer Interface (Brain-Computer Interface), Brain-Computer Interface (Brain-Computer Interface), Brain-Computer Interface (Brain-Computer Interface). Visual evoked potential (VEP) is a response of occipital cortex to visual stimulation. As a kind of convenient EEG signal analysis and extraction, VEP is often used as input signal of control system. The intelligent home appliance system based on brain-computer interface (BCI) is put forward in view of the traditional concept of smart home. The brain-computer interface technology is introduced into the system on the basis of the original technology, which can solve the problems of independent living and rehabilitation treatment of the disabled. The intelligent home appliance control system based on portable brain-computer interface is mainly composed of EEG acquisition module, data analysis module, instruction conversion module, instruction transmission network and external equipment control, etc. The accuracy and speed of EEG data analysis is the focus of the research. In this paper, we design a set of intelligent household electrical appliances which only use EEG control by using visual evoked potential (VEP). Not only can the Steady-state visual evoked potentials, SSVEP signal be collected and analyzed in real time, but also it can be converted into the corresponding control command to achieve the purpose of controlling intelligent appliances without limb language. The system is mainly divided into two parts: a real-time EEG processor based on DSP platform and an intelligent home appliance device based on Zigbee wireless network. By using DSP TMS320F2812 chip of TI2000 series, the digital filtering, feature extraction and classification of SSVEP are realized by the characteristics of DSP high speed and low power consumption. Finally, the feature signal is converted into control command to control the intelligent appliance device on wireless network node. In the CCS3.3 software, we use C language to program the TMS320F2812 chip, so as to ensure that the system can collect and process the SSVEP effectively. Zigbee wireless network control intelligent home appliance system is mainly developed on the IAR810 software. The intelligent home appliance control system based on SSVEP is verified by online experiments and compared with the EEG processing device built on the upper computer LabVIEW platform. The processing time of DSP EEG processing platform is about 0.98 higher than that of traditional PC processing. The processing platform based on DSP has the mobility and portability, combined with the development of the new intelligent home technology of the Internet of things, it can better realize the EEG control appliance device, and ensure the reliability and portability of the system.
【學(xué)位授予單位】:天津職業(yè)技術(shù)師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TU855;TP273

【參考文獻】

相關(guān)期刊論文 前10條

1 堯德中;劉鐵軍;雷旭;楊平;徐鵬;張楊松;;基于腦電的腦-機接口:關(guān)鍵技術(shù)和應(yīng)用前景[J];電子科技大學(xué)學(xué)報;2009年05期

2 陶國彬;張秀艷;任玉霞;;FIR濾波器的等波紋最優(yōu)化設(shè)計[J];大慶石油學(xué)院學(xué)報;2007年06期

3 徐鋒;劉欣;方加寶;;智能家居遠(yuǎn)程控制系統(tǒng)設(shè)計[J];低壓電器;2009年04期

4 趙麗;孫永;馬彥臻;何洋;;基于SSVEP的腦-機接口自動車系統(tǒng)研究[J];電子測量技術(shù);2011年12期

5 劉家樂;吳小培;;基于穩(wěn)態(tài)視覺誘發(fā)電位的腦機接口系統(tǒng)的設(shè)計與研究[J];工業(yè)控制計算機;2011年05期

6 申麗巖;方濱;沈毅;;基于負(fù)熵極大的獨立分量分析方法[J];中北大學(xué)學(xué)報(自然科學(xué)版);2005年06期

7 侯俊;吳成東;袁中甲;周蕓;張云洲;;基于ZigBee的智能家居安全監(jiān)控系統(tǒng)研究[J];機電工程;2009年01期

8 孫進;張征;周宏甫;;基于腦機接口技術(shù)的康復(fù)機器人綜述[J];機電工程技術(shù);2010年04期

9 汪成義;田峰;;基于嵌入式Web服務(wù)器的智能家居遠(yuǎn)程控制[J];科技信息;2009年06期

10 王行愚;金晶;張宇;王蓓;;腦控:基于腦-機接口的人機融合控制[J];自動化學(xué)報;2013年03期

相關(guān)博士學(xué)位論文 前3條

1 施錦河;運動想象腦電信號處理與P300刺激范式研究[D];浙江大學(xué);2012年

2 李俊華;腦活動狀態(tài)EEG信號解碼方法及其應(yīng)用[D];上海交通大學(xué);2012年

3 龍錦益;腦信號分析的算法研究與多模態(tài)腦機接口[D];華南理工大學(xué);2012年

,

本文編號:2008019

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2008019.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9ce19***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com