單井循環(huán)地下?lián)Q熱系統(tǒng)地下水流動及其傳熱特性研究
本文選題:地下水源熱泵 + 循環(huán)單井 ; 參考:《哈爾濱工業(yè)大學》2014年博士論文
【摘要】:單井循環(huán)地下?lián)Q熱系統(tǒng)作為一種新型的地下水源熱泵系統(tǒng)熱源井,目前共有三種形式,即循環(huán)單井、抽灌同井和填礫同井。它們均將抽水管和回水管置于一口井內(nèi),在井的下部抽水,上部回水。循環(huán)單井是在基巖層中直接開孔,大部分水在井孔之內(nèi)循環(huán),與井壁發(fā)生熱量交換;少部分水進入井孔,并進入含水層與其進行原水交換;抽灌同井在井孔內(nèi)部加設了隔板,將熱源井分為三個部分,上部為回水區(qū),中間為隔斷區(qū),下部為抽水區(qū);填礫同井的形式和抽灌同井類似,不同之處在于,填礫同井的井孔較井管的直徑要大很多,其空隙采用分選性較好的礫石進行回填。本文針對以上三種熱源井開展了相關的理論和實驗研究工作,主要研究工作及結果如下: 設計并搭建了單井循環(huán)地下?lián)Q熱系統(tǒng)的物理模擬砂箱實驗臺,選取了實驗測量儀器和數(shù)據(jù)采集系統(tǒng),計算了實驗誤差。結果表明,所搭建實驗臺的測量誤差在可接受的范圍之內(nèi),能夠準確真實地反映物理現(xiàn)象。 通過更換不同的預制井來實驗模擬三種類型熱源井的特性。針對三種不同的熱源井,分別進行不同抽回間距、不同初始地溫和不同負荷的實驗研究。并對循環(huán)單井和填礫同井進行了不同排放比例的實驗研究。研究表明,增大抽回間距能夠顯著改善三種熱源井的抽水溫度、提高換熱量。三種熱源井中循環(huán)單井承擔負荷的能力最低,抽回水溫度變化最大,熱影響范圍最小。在取熱工況下,排放能夠提高循環(huán)單井和填礫同井的抽水溫度及取熱量,小排放比對于提高熱源井承擔負荷能力的效果較好,隨著排放比的增加,這種改善效果減弱。 針對不同運行模式下抽灌同井特性進行實驗研究,,按照三個具有代表性的地區(qū)——北京、沈陽和上海采暖期和空調(diào)期時間分配來設計實驗。實驗包括四種工況,即連續(xù)取熱、連續(xù)放熱、先夏后冬和先冬后夏。研究表明,抽灌同井在寒冷地區(qū)運行過程中,系統(tǒng)在該實驗條件下,僅靠自然恢復期內(nèi)的恢復,地下含水層不能使自身恢復至最初狀態(tài)。必須采用輔助設備,對地下含水層進行熱量補給,保證系統(tǒng)長期可靠的運行。在冷熱負荷相當?shù)牡貐^(qū),采用先夏后冬的運行模式,可以提高系統(tǒng)運行的穩(wěn)定性;在寒冷地區(qū)應先進行放熱工況,繼而進行取熱工況,保持熱源井的抽水溫度處在較高水平。相反,在較暖和地區(qū)則應先進行取熱工況,保持熱源井的抽水溫度處在較低水平。 建立了多區(qū)域耦合CFD仿真模型。通過納維-斯托克斯方程和伯努利方程對多孔介質(zhì)中運動方程進行分析推導,得到了多孔介質(zhì)內(nèi)的流動模型,并通過實驗確定了該流動模型中的經(jīng)驗系數(shù)。利用單井循環(huán)地下?lián)Q熱系統(tǒng)砂箱實驗臺測得的實驗數(shù)據(jù)對數(shù)值模擬結果進行了對比,驗證了仿真模型的準確性。 針對三種熱源井進行了不同孔隙度、不同初始地溫及不同抽水流量三個方面的仿真研究,并分析了三種熱源井含水層的流場以及不同流量下的溫度場變化情況。研究表明,孔隙度對含水層參與換熱較多的抽灌同井和填礫同井影響稍大,對循環(huán)單井的影響則較小,但總體上看孔隙度對三種熱源井的特性影響不大。抽水流量對單井循環(huán)地下?lián)Q熱系統(tǒng)的影響較大,增大抽水流量使得三種熱源井的抽水溫度變化加大,并能顯著提高熱源井的熱影響范圍。初始地溫的變化并不影響含水層溫度的變化趨勢,抽水溫度的變化趨勢也幾乎相同,只是各工況間存在一定溫差。但提高初始地溫能夠顯著提高熱源井的平均抽水溫度和累計取熱量,可見初始地溫是影響單井循環(huán)地下?lián)Q熱系統(tǒng)的關鍵因素之一。 本文為國家自然科學基金“單井循環(huán)地下?lián)Q熱系統(tǒng)多流態(tài)流動與傳熱耦合機理研究”(41002085)的部分研究內(nèi)容。本文的研究工作,為全面的掌握單井循環(huán)地下?lián)Q熱系統(tǒng)的運行特性、為該系統(tǒng)的設計及應用提供了重要的理論基礎和技術儲備。
[Abstract]:As a new type of heat source well of underground water source heat pump system , the single well circulation underground heat exchange system has three forms , namely circulation single well , pumping well and gravel with same well . Both pumping pipes and water return pipes are placed in a well . They are pumped in the lower part of the well . The circulating single well is directly open in the bedrock layer . Most of the water circulates inside the well bore , and heat exchange occurs with the well wall ;
a small part of water enters a well hole and enters a water - containing layer and carries out raw water exchange ;
a partition board is additionally arranged inside the well hole of the pumping well , the heat source well is divided into three parts , the upper part is a water return area , the middle is a partition area , and the lower part is a water pumping area ;
The form of gravel and well is similar to that of pumping irrigation . The difference lies in that the diameter of the well bore of gravel and well is much larger than the diameter of the well pipe , and the void is backfilled with gravel with better sorting property . In this paper , the relevant theoretical and experimental research work is carried out for the above three heat source wells , and the main research work and the results are as follows :
The physical simulation sand box experiment platform of single well circulation underground heat exchange system is designed and built , the experimental measurement instrument and the data acquisition system are selected , and experimental error is calculated . The results show that the error of the experiment table is within the acceptable range and can accurately and truly reflect the physical phenomena .
In this paper , the characteristics of three types of heat source wells are simulated by replacing different prefabricated wells . Experimental research on different pumping intervals and different initial conditions and different loads is carried out for three different heat source wells . The results show that increasing the pumping distance can significantly improve the pumping temperature of three heat source wells and increase the heat exchange rate .
The experiments were carried out on the characteristics of pumping and irrigation in different operating modes . The experiments were carried out according to three representative areas _ Beijing , Shenyang and Shanghai heating period and air conditioning time distribution . The experiment included four working conditions , namely , continuous heat removal , continuous heat release , first summer and summer after winter . The research shows that the system can not restore itself to the original state only by the restoration of the natural recovery period . The auxiliary equipment is used to make the system run reliably . In the area where the cold and heat load is equivalent , the operation mode of the first summer and the winter is adopted to improve the stability of the system operation .
In the cold area , the heat release working condition should be carried out firstly , then the hot working condition should be carried out to keep the water pumping temperature of the heat source well at a higher level . In contrast , the hot working condition should be firstly carried out in the warmer regions , so that the pumping temperature of the heat source well is kept at a lower level .
A multi - zone coupled CFD simulation model is established . The motion equations in porous media are derived by Navier - Stokes equation and Bernoulli equation . The flow model in porous media is obtained . The empirical coefficients in the flow model are determined experimentally . The results of numerical simulation are compared with the experimental data measured by the experiment table of the sand box of the single - well circulation underground heat exchange system , and the accuracy of the simulation model is verified .
Three heat source wells are simulated and studied with different porosity , different initial ground temperature and different pumping flow . The results show that the influence of porosity on the flow field of three heat source wells and the change of temperature field in different flow rates is small .
This paper is a part of the research on the mechanism of multi - flow state flow and heat transfer coupling mechanism of single - well circulation underground heat transfer system of the National Natural Science Foundation ( 41002085 ) . The research work of this paper provides an important theoretical basis and technical reserve for the design and application of this system in order to master the operating characteristics of the single well circulating underground heat exchange system .
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TU83
【參考文獻】
相關期刊論文 前10條
1 李月;袁建偉;王瑞祥;曹旭明;;水文地質(zhì)參數(shù)對單井回灌地下水源熱泵抽水井溫度場影響[J];北京建筑工程學院學報;2011年04期
2 王明育,馬捷,萬曼影;地下含水層儲能兩階段熱量運移數(shù)值模型研究[J];吉林大學學報(地球科學版);2004年04期
3 王明育,馬捷,郝振良;地下含水層熱儲井位置選擇和布置[J];成都理工大學學報(自然科學版);2005年01期
4 薛禹群,謝春紅,張志輝,吳吉春;三維非穩(wěn)定流含水層儲能的數(shù)值模擬研究[J];地質(zhì)論評;1994年01期
5 張勇,薛禹群,謝春紅,吳吉春,張志輝;考慮溫度變化的地下水運動方程及其在儲能模型中的應用[J];地質(zhì)論評;1999年02期
6 薛禹群;謝春紅;李勤奮;;含水層貯熱能研究——上海貯能試驗數(shù)值模擬[J];地質(zhì)學報;1989年01期
7 張志輝,吳吉春,薛禹群,謝春紅;含水層熱量輸運中自然熱對流和水-巖熱交換作用的研究[J];工程地質(zhì)學報;1997年03期
8 袁燈平;;上海某垂直單U地埋管鉆孔換熱能力試驗研究[J];工程勘察;2011年08期
9 馬捷,王明育,戴斌;地下含水層的儲能和過程特性的分析[J];華北電力大學學報;2004年06期
10 倪龍;馬最良;孫麗穎;;同井回灌地下水源熱泵熱力特性分析[J];哈爾濱工程大學學報;2006年02期
相關博士學位論文 前3條
1 王玉林;承壓地下水開采井流模型及其滲流理論研究[D];浙江大學;2011年
2 倪龍;同井回灌地下水源熱泵源匯井運行特性研究[D];哈爾濱工業(yè)大學;2007年
3 周學志;抽灌井群地下水運移能量傳輸及其傳熱研究[D];吉林大學;2013年
本文編號:1818287
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1818287.html