多孔建筑材料濕物理性質的測試方法研究
發(fā)布時間:2018-04-20 16:18
本文選題:多孔建筑材料 + 濕物理性質 ; 參考:《華南理工大學》2014年博士論文
【摘要】:多孔建筑材料的濕物理性質是分析建筑圍護結構熱濕傳遞過程的重要參數。用準確可靠的方法測試多孔建筑材料的濕物理性質對圍護結構的熱工設計、室內熱濕環(huán)境的分析及建筑能耗的計算有著重要意義。 本文以加氣混凝土(國產及比利時產)、硅鈣板和瓷磚等典型多孔建筑材料為測試材料,首先研究了測試試件的最佳稱重方法和干燥方法。通過理論和實驗分析,發(fā)現對大尺寸的試件可以進行直接稱重,而小尺寸的試件在稱重過程中應用非吸濕容器密封。對大多數材料推薦采用70°C烘干法進行干燥。 其次,本文參考多項國際和地區(qū)標準,在各種條件下進行了平衡吸放濕實驗、蒸汽滲透實驗、毛細吸水實驗、真空飽和實驗以及壓力平板實驗,測試了上述材料的等溫吸放濕曲線、蒸汽滲透系數、吸水系數、毛細飽和含濕量、液態(tài)水擴散系數、表觀密度、孔隙率、真空飽和含濕量和保水曲線等各種物理性質。研究發(fā)現,上述實驗的重復性都較好,測試結果的重復性誤差一般不大于材料不均一性引起的誤差。等溫吸濕曲線、蒸汽滲透系數、毛細飽和含濕量、表觀密度、孔隙率和真空飽和含濕量對溫度的變化不敏感,在10-40°C范圍內溫度變化造成的影響一般不大于實驗的重復性誤差。吸水系數和液態(tài)水擴散系數隨溫度的升高而變大,,其關系可根據Lucas-Washburn公式預測。此外,本文進一步對測試過程中的各種潛在影響因素(如試件尺寸、中間步驟、預處理方法、測試時長、實驗壓力等)進行了系統研究,發(fā)現大多數因素對實驗結果沒有明顯影響。本文還改進了蒸汽滲透實驗、毛細吸水實驗和壓力平板實驗的裝置,對平衡吸放濕實驗和蒸汽滲透實驗的結果提出了新的表達方法,并證明了對毛細吸水實驗第一階段的數據進行分析時只需要進行普通的線性擬合。 最后,本文以一維穩(wěn)態(tài)蒸汽滲透過程為例,分析了物性參數的誤差對傳濕計算的影響。結果表明,蒸汽滲透系數的常物性取值會對蒸汽傳遞過程的計算帶來明顯誤差。蒸汽滲透系數的誤差對蒸汽傳遞速率的影響程度恒定,而含濕量或相對濕度的誤差對蒸汽傳遞速率的影響程度與當前含濕量或相對濕度有關。
[Abstract]:The wet physical property of porous building materials is an important parameter to analyze the heat and moisture transfer process of building enclosure. It is of great significance to test the physical properties of porous building materials by accurate and reliable method for thermal design, analysis of indoor thermal and wet environment and calculation of building energy consumption. In this paper, typical porous building materials such as aerated concrete (made in China and Belgium), calcium silicate plate and ceramic tile are used as test materials. First, the optimum weighing method and drying method of test specimens are studied. Through theoretical and experimental analysis, it is found that large size specimens can be weighed directly, while small size specimens can be sealed by non-absorbent containers in the weighing process. 70 擄C drying is recommended for most materials. Secondly, the experiments of equilibrium moisture absorption and desorption, vapor permeation, capillary water absorption, vacuum saturation and pressure plate experiments have been carried out under various conditions with reference to many international and regional standards. The isothermal moisture absorption and desorption curves, vapor permeability coefficient, water absorption coefficient, capillary saturated moisture content, liquid water diffusion coefficient, apparent density, porosity, vacuum saturated moisture content and water retention curve were measured. It is found that the repeatability of the above experiments is good, and the repeatability error of the test results is not generally greater than that caused by the heterogeneity of materials. The isothermal moisture absorption curve, vapor permeability coefficient, capillary saturated moisture content, apparent density, porosity and vacuum saturated moisture content are not sensitive to the temperature change, and the effect of temperature change in the range of 10-40 擄C is generally less than the repeatability error of the experiment. The water absorption coefficient and the diffusion coefficient of liquid water increase with the increase of temperature, which can be predicted by Lucas-Washburn formula. In addition, various potential influencing factors (such as specimen size, intermediate steps, pretreatment methods, test duration, experimental pressure, etc.) in the process of testing are systematically studied in this paper. It was found that most of the factors had no significant effect on the experimental results. This paper also improves the apparatus of vapor permeation experiment, capillary water absorption experiment and pressure plate experiment, and puts forward a new expression method for the results of equilibrium moisture absorption and desorption experiment and steam permeation experiment. It is proved that only a general linear fitting is needed to analyze the data of the first stage of capillary water absorption experiment. Finally, the effect of the error of physical parameters on the calculation of moisture transfer is analyzed by taking the one-dimensional steady state vapor permeation process as an example. The results show that the constant physical properties of the vapor permeability coefficient will bring obvious error to the calculation of the steam transfer process. The influence of the error of vapor permeability coefficient on the steam transfer rate is constant, while the influence of moisture content or relative humidity error on the steam transfer rate is related to the current moisture content or relative humidity.
【學位授予單位】:華南理工大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TU502
【參考文獻】
相關期刊論文 前10條
1 韓吉田,歸柯庭,施明恒,虞維平;多孔介質局部含濕量測試技術的研究[J];傳感技術學報;1997年04期
2 賈永英,趙基玉,魏春艷,朱國伏;建筑墻體熱質傳遞等效耦合擴散模型建立[J];大慶石油學院學報;2004年05期
3 胡玉坤;丁靜;;多孔介質內部傳熱傳質規(guī)律的研究進展[J];廣東化工;2006年11期
4 鄭茂余;孔凡紅;韓宗偉;;新建建筑外保溫圍護結構熱質耦合傳遞[J];哈爾濱工業(yè)大學學報;2009年04期
5 裴清清,陳在康;幾種常用建材的等溫吸放濕線試驗研究[J];湖南大學學報(自然科學版);1999年04期
6 郭興國;陳友明;;熱濕氣候地區(qū)多層墻體的熱濕性能分析[J];湖南大學學報(自然科學版);2008年08期
7 任鵬;李秀輝;孟慶林;;;⒅楸厣皾{的吸放濕及導熱性能[J];土木建筑與環(huán)境工程;2010年04期
8 李魁山;張旭;韓星;朱東明;;建筑材料等溫吸放濕曲線性能實驗研究[J];建筑材料學報;2009年01期
9 孔凡紅;鄭茂余;韓宗偉;白天;;新建建筑圍護結構熱質傳遞對室內溫濕度環(huán)境的影響[J];建筑科學;2008年08期
10 王倩;李念平;曾德軍;龍激波;;竹材組合墻體構件熱濕耦合遷移特性[J];科技導報;2010年17期
本文編號:1778532
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1778532.html