天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 城建管理論文 >

基于BIM協(xié)同設(shè)計(jì)建筑熱工性能優(yōu)化設(shè)計(jì)過(guò)程的經(jīng)濟(jì)性分析

發(fā)布時(shí)間:2018-03-08 09:02

  本文選題:建筑熱工性能優(yōu)化 切入點(diǎn):協(xié)同設(shè)計(jì) 出處:《大連理工大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文


【摘要】:傳統(tǒng)的建筑設(shè)計(jì)產(chǎn)物不單是在施工階段需要消耗數(shù)量巨大的不可再生能源,而且在建成之后同樣需要消耗大量的能源,并且嚴(yán)重的污染和破壞環(huán)境。通過(guò)建筑熱工性能優(yōu)化可以最大限度的降低能源消耗和提高建筑物整體性能,并且滿(mǎn)足人們對(duì)室內(nèi)舒適性的要求。熱工性能優(yōu)化伴隨著初投資以及運(yùn)行費(fèi)用的變化,如何客觀地分析優(yōu)化方案的經(jīng)濟(jì)性在能源緊缺的今天尤為重要。本文構(gòu)建了基于全生命周期成本控制的BIM協(xié)同設(shè)計(jì)平臺(tái),以費(fèi)用年值法和動(dòng)態(tài)追加投資回收期作為經(jīng)濟(jì)性評(píng)價(jià)指標(biāo)分析基于所構(gòu)建的BIM協(xié)同設(shè)計(jì)平臺(tái)完成建筑熱工性能優(yōu)化方案的經(jīng)濟(jì)性。本文通過(guò)文獻(xiàn)查閱、理論分析、和工程案例研究重點(diǎn)分析下問(wèn)題: 首先,針對(duì)現(xiàn)有的建筑早期設(shè)計(jì)過(guò)程中熱工設(shè)計(jì)優(yōu)化缺乏全面客觀的經(jīng)濟(jì)性分析、過(guò)分注重初投資等問(wèn)題,對(duì)建筑全生命周期成本、初投資和運(yùn)行費(fèi)用三者之間的關(guān)系進(jìn)行了闡述分析,并研究了建筑熱工性能優(yōu)化方案的經(jīng)濟(jì)性分析方法。確定了以全生命周期費(fèi)用年值和動(dòng)態(tài)追加投資回收期作為評(píng)價(jià)指標(biāo)的經(jīng)濟(jì)性分析方法。 其次,構(gòu)建基于全生命周期成本控制的BIM協(xié)同設(shè)計(jì)平臺(tái),組建以建筑師、暖通工程師、造價(jià)師等多專(zhuān)業(yè)協(xié)同工作的建筑熱工優(yōu)化設(shè)計(jì)平臺(tái)。建筑師通過(guò)BIM協(xié)同設(shè)計(jì)平臺(tái)完成方案的建筑信息模型構(gòu)建,暖通工程師和造價(jià)工程師分別對(duì)建筑師完成的建筑設(shè)計(jì)方案的信息模型進(jìn)行性能分析和成本分析,再把相關(guān)的分析結(jié)果及建議通過(guò)協(xié)同設(shè)計(jì)平臺(tái)反饋給建筑師來(lái)協(xié)助建筑師完成方案的優(yōu)化。 再次,通過(guò)呼和浩特市某五層住宅案例基于全生命周期成本的建筑熱工性能優(yōu)化決策流程的分析,從全生生命周期成本最低的角度,確定外墻熱阻提高89.2%、外窗熱阻提高46.5%的熱工性能優(yōu)化方案可以在滿(mǎn)足節(jié)能65%的原方案基礎(chǔ)上再節(jié)能28.72%,追加投資為58.01元/m2,年度節(jié)能收益為14.34元/m2,二氧化碳年排放減少20.66kg/m2,即使考慮到資金的時(shí)間價(jià)值也只需要不到5年的時(shí)間就可以收回追加投資。 最后,本研究在前文提出的基于全生命周期成本控制的BIM協(xié)同設(shè)計(jì)平臺(tái)中完成了兩個(gè)實(shí)際工程案例的建筑熱工性能優(yōu)化經(jīng)濟(jì)性分析決策方法的應(yīng)用。通過(guò)案例分析發(fā)現(xiàn)在滿(mǎn)足當(dāng)前節(jié)能65%的標(biāo)準(zhǔn)(北京市居住建筑節(jié)能75%標(biāo)準(zhǔn))的設(shè)計(jì)方案中,對(duì)方案進(jìn)行建筑熱工性能優(yōu)化,然后運(yùn)用全生命周期總成本和追加投資回收期等經(jīng)濟(jì)性分析手段確定優(yōu)化方案,可以實(shí)現(xiàn)在原節(jié)能設(shè)計(jì)標(biāo)準(zhǔn)的基礎(chǔ)上再節(jié)能10%-30%,并且追加的初投資可以在很短的時(shí)間通過(guò)節(jié)能收益來(lái)收回。
[Abstract]:Traditional architectural design products not only consume a large amount of non-renewable energy in the construction phase, but also consume a large amount of energy after completion. And serious pollution and damage to the environment. Through building thermal performance optimization can minimize energy consumption and improve the overall performance of the building, The optimization of thermal performance is accompanied by the change of initial investment and operation cost. How to objectively analyze the economy of optimization scheme is particularly important in today's energy shortage. In this paper, a BIM collaborative design platform based on life-cycle cost control is constructed. Based on the annual cost method and the dynamic additional investment payback period as the economic evaluation index, this paper analyzes the economy of the thermal performance optimization scheme of building based on the BIM collaborative design platform. And engineering case studies focus on the following issues:. First of all, in view of the lack of comprehensive and objective economic analysis of thermal design optimization in the early design process of existing buildings, excessive attention is paid to the initial investment and so on. The relationship between initial investment and operation cost is analyzed. The economic analysis method of the optimization scheme of building thermal performance is studied, and the economic analysis method based on the annual value of the whole life cycle cost and the dynamic additional investment payback period is determined. Secondly, the BIM collaborative design platform based on the whole life cycle cost control is constructed, which is composed of architects, HVAC engineers, The building thermal optimization design platform with multi-professional and collaborative work, such as cost engineer, is used by the architect to complete the building information model construction of the project through the BIM collaborative design platform. HVAC engineers and cost engineers analyze the performance and cost of information models of architectural design schemes completed by architects, respectively. Then the related analysis results and suggestions are fed back to the architect through the collaborative design platform to assist the architect to complete the optimization of the project. Thirdly, through the analysis of the decision-making process of building thermal performance optimization based on the whole life cycle cost of a five-story residence in Hohhot City, from the perspective of the lowest cost of the whole life cycle, It is determined that the thermal performance optimization scheme of increasing the thermal resistance of external wall by 89.2and the thermal resistance of outer window by 46.5% can save 28.72 energy on the basis of the original scheme of energy saving 65%, the additional investment is 58.01 yuan / m2, the annual energy saving income is 14.34 yuan / m ~ 2, and the annual carbon dioxide emission is reduced. Less than 20.66 kg / m2, even considering the time value of the capital, takes less than five years to recoup additional investment. Finally, In the BIM collaborative design platform based on the whole life cycle cost control proposed earlier, the application of the economic analysis and decision method of building thermal performance optimization in two practical engineering cases has been completed in this study. The case study shows that the method can be applied to the economic analysis of thermal performance optimization of buildings. In the design scheme of meeting the current energy saving 65% standard (Beijing residential building energy saving 75% standard), The thermal performance of the project is optimized, and the optimization scheme is determined by the economic analysis means such as the total cost of the whole life cycle and the payback period of the additional investment. Energy saving can be realized on the basis of the original energy saving design standard 10-30 and the additional initial investment can be recovered in a very short time through the energy saving income.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TU111.4;TU17

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 宋曉新;鞠碩華;王隨林;;北方既有居住圍護(hù)結(jié)構(gòu)節(jié)能潛力分析[J];低溫建筑技術(shù);2008年05期

2 董海廣;許淑惠;;北京地區(qū)窗墻比和遮陽(yáng)對(duì)住宅建筑能耗的影響[J];建筑節(jié)能;2010年09期

3 王厚華;吳偉偉;;居住建筑外墻外保溫厚度的優(yōu)化分析[J];重慶大學(xué)學(xué)報(bào);2008年08期

4 ;2003~2008年全國(guó)建筑業(yè)信息化發(fā)展規(guī)劃綱要[J];智能建筑與城市信息;2004年01期

5 肖良麗;吳子昊;方婉蓉;王小濤;;BIM理念在建筑綠色節(jié)能中的研究和應(yīng)用[J];工程建設(shè)與設(shè)計(jì);2013年03期

6 焦慶豐;朱光明;李明;黃丕維;段學(xué)農(nóng);;我國(guó)火電廠能耗現(xiàn)狀及節(jié)能潛力分析[J];湖南電力;2008年01期

7 郁文紅,楊昭;采暖居住建筑節(jié)能改造收益分析[J];節(jié)能;2004年12期

8 劉學(xué)來(lái),李永安;居住建筑外墻外保溫作法及經(jīng)濟(jì)分析[J];建筑技術(shù);2005年10期

9 過(guò)俊;陳宇;趙斌;;BIM在建筑全生命周期中的應(yīng)用[J];建筑技藝;2010年Z1期

10 過(guò)俊;;BIM在國(guó)內(nèi)建筑全生命周期的典型應(yīng)用[J];建筑技藝;2011年Z1期

相關(guān)博士學(xué)位論文 前1條

1 于靖華;基于EETP指標(biāo)的夏熱冬冷地區(qū)居住建筑圍護(hù)結(jié)構(gòu)熱工性能及經(jīng)濟(jì)性研究[D];湖南大學(xué);2009年



本文編號(hào):1583234

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1583234.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)ba34b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com