承包商預(yù)測(cè)業(yè)主支付違約行為的多元線性回歸模型構(gòu)建
發(fā)布時(shí)間:2018-02-09 08:14
本文關(guān)鍵詞: 承包商 業(yè)主支付違約行為 影響因素 多元線性回歸模型 逐步回歸法 出處:《昆明理工大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:業(yè)主支付違約行為是中國(guó)建設(shè)領(lǐng)域多年來(lái)面臨的難題,已嚴(yán)重影響了建設(shè)市場(chǎng)的正常秩序,阻礙了承包商的健康發(fā)展,破壞了經(jīng)濟(jì)穩(wěn)定和社會(huì)和諧。因此,尋找業(yè)主支付違約行為的主要影響因素,使承包商在投標(biāo)決策時(shí)能快速預(yù)測(cè)業(yè)主支付違約行為具有重要的現(xiàn)實(shí)意義。 文章站在承包商的角度,在其自身實(shí)力滿足業(yè)主投標(biāo)要求的前提下分析業(yè)主支付違約行為。文章圍繞業(yè)主支付違約行為這一主題探討了業(yè)主支付違約行為的影響因素及其分類體系,影響業(yè)主支付違約行為的主要微觀因素,構(gòu)建業(yè)主支付違約行為的預(yù)測(cè)模型三個(gè)研究問題。首先,文章通過(guò)文獻(xiàn)回顧和梳理,總結(jié)出較全面的業(yè)主支付違約行為影響因素并對(duì)其進(jìn)行了兩分法的分類,得到宏觀因素3個(gè),微觀因素11個(gè)。接著,在影響因素分類的基礎(chǔ)上,通過(guò)專家打分法確定了5個(gè)主要微觀影響因素分別是業(yè)主融資能力和本身的資金實(shí)力、業(yè)主的聲譽(yù)、雙方信任程度、合同簽訂情況、承包商的履約表現(xiàn)。最后,文章將5個(gè)主要微觀影響因素作為多元線性回歸模型的自變量建立理論框架和研究假設(shè),并以此為基礎(chǔ)設(shè)計(jì)問卷,通過(guò)統(tǒng)計(jì)軟件SPSS17.0判斷問卷的信度與效度和分析數(shù)據(jù),采用逐步回歸法估計(jì)出多個(gè)模型,根據(jù)模型擬合數(shù)據(jù)程度以及總體回歸方程和回歸系數(shù)的顯著性,選擇出最優(yōu)模型,并且依次檢驗(yàn)?zāi)P偷幕炯俣?診斷數(shù)據(jù)中是否存在異常值,用建立好的模型預(yù)測(cè)業(yè)主支付違約行為。研究結(jié)論顯示,模型中業(yè)主融資能力和本身的資金實(shí)力的回歸系數(shù)為-0.471,承包商的履約表現(xiàn)的回歸系數(shù)為-0.262,業(yè)主的聲譽(yù)的回歸系數(shù)為-0.257,雙方信任程度的回歸系數(shù)為-0.206,合同簽訂情況的回歸系數(shù)為-0.120,常數(shù)項(xiàng)為7.398。文章在運(yùn)用多元線性回歸法構(gòu)建預(yù)測(cè)模型研究業(yè)主支付違約行為的問題上具有創(chuàng)新性,有助于承包商在投標(biāo)時(shí)做出理性決策。
[Abstract]:The breach of payment by the owner has been a difficult problem in the construction field of China for many years, which has seriously affected the normal order of the construction market, hindered the healthy development of the contractor, destroyed the economic stability and social harmony. It is of great practical significance to find out the main influencing factors of the employer's payment breach of contract, so that the contractor can predict the employer's payment breach of contract quickly when making the bidding decision. The article stands at the contractor's point of view, On the premise that its own strength meets the requirements of owner's bidding, this paper analyzes the owner's payment breach of contract. This paper discusses the influencing factors and its classification system of the owner's payment breach of contract, focusing on the subject of the owner's payment breach of contract. The main microcosmic factors that affect the owner's payment breach of contract and the construction of the forecasting model of the owner's payment default behavior are studied. First of all, the article reviews and combs through literature review, This paper summarizes the influencing factors of the owner's payment breach of contract and classifies them by dichotomy, and obtains 3 macro factors and 11 micro factors. Then, on the basis of the classification of influencing factors, Through the expert scoring method, it is determined that the five main microcosmic influencing factors are the owner's financing ability and his own capital strength, the owner's reputation, the degree of mutual trust, the signing of the contract, the performance of the contractor. Finally, In this paper, five main microcosmic factors are used as independent variables of multivariate linear regression model to establish theoretical framework and research hypotheses. Based on this, a questionnaire is designed to determine the reliability, validity and analysis data of the questionnaire by statistical software SPSS17.0. Several models were estimated by stepwise regression method. The optimal model was selected according to the degree of fitting data and the significance of the total regression equation and regression coefficient, and the basic assumptions of the model were tested in turn. If there are outliers in the diagnostic data, the established model is used to predict the defaulting behavior of the owners. In the model, the regression coefficient of the owner's financing ability and his own capital strength is -0.471. the regression coefficient of the contractor's performance is -0.262, the regression coefficient of the owner's reputation is -0.257, the regression coefficient of mutual trust is -0.206, and the contract signing condition. The regression coefficient is -0.120, and the constant term is 7.398.This paper is innovative in using the multivariate linear regression method to build a prediction model to study the defaulting behavior of the owner. It helps the contractor to make rational decision in bidding.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:F426.92;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 張薇;黃有亮;;工程承發(fā)包雙方在工程合同執(zhí)行過(guò)程中博弈行為分析[J];建筑管理現(xiàn)代化;2009年04期
2 蔣衛(wèi)平;張謙;樂云;;基于業(yè)主方視角的工程項(xiàng)目中信任的產(chǎn)生與影響[J];工程管理學(xué)報(bào);2011年02期
3 朱[?,劉高軍,馬麗;國(guó)外工程款條件支付的研究[J];建筑經(jīng)濟(jì);2004年11期
4 潘興祖;;淺析施工企業(yè)如何化解工程項(xiàng)目履約風(fēng)險(xiǎn)[J];山西建筑;2009年16期
5 伍進(jìn);何佰洲;;工程款英系法律保護(hù)模式及其對(duì)我國(guó)建筑業(yè)的借鑒[J];科技進(jìn)步與對(duì)策;2009年21期
6 范浩生;;基于承包商利益的施工合同風(fēng)險(xiǎn)探討[J];科技信息;2012年09期
7 肖剛;;施工合同風(fēng)險(xiǎn)管理的防范[J];施工企業(yè)管理;2007年10期
,本文編號(hào):1497486
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1497486.html
最近更新
教材專著