T型導(dǎo)軌壓力彎曲變形及其校直工藝?yán)碚撗芯?/H1>
發(fā)布時間:2018-01-11 16:36
本文關(guān)鍵詞:T型導(dǎo)軌壓力彎曲變形及其校直工藝?yán)碚撗芯?/strong> 出處:《浙江大學(xué)》2014年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: T型導(dǎo)軌 彈塑性彎曲 曲率 載荷-撓度關(guān)系 加載行程 逐段壓彎及校直 殘余應(yīng)力 控制系統(tǒng)
【摘要】:彎曲變形校直工藝過程是T型導(dǎo)軌切削加工流程中的最后環(huán)節(jié),也提高導(dǎo)軌直線度的必然環(huán)節(jié)。精密自動校直設(shè)備的發(fā)展必然會催生和激發(fā)壓力校直工藝?yán)碚摲矫娴难芯?而對校直工藝?yán)碚摰难芯勘仨氁獜膶?dǎo)軌壓彎過程的彈塑性彎曲回彈機理入手。因此,本論文分別基于彈塑性理論、實驗研究、有限元模擬等方法對T型導(dǎo)軌的彎曲回彈特性進(jìn)行了較為系統(tǒng)的研究,以此為基礎(chǔ)對導(dǎo)軌反彎校直工藝?yán)碚撨M(jìn)行了探討。本文主要完成了以下工作: 第一章介紹了本課題的研究背景和意義、壓力彎曲及彎曲變形校直工藝?yán)碚摷捌湎嚓P(guān)領(lǐng)域的研究現(xiàn)狀、存在的科學(xué)問題以及本文研究的主要內(nèi)容等。 第二章針對材料強化模型及強化特性參數(shù)對工件彎曲變形量的計算精度有著重要的影響,以彈塑性彎曲理論為基礎(chǔ)對強化性金屬T型導(dǎo)軌彎曲變形進(jìn)行研究,建立了導(dǎo)軌回彈曲率、殘留曲率關(guān)系的數(shù)學(xué)解析模型,在電子萬能試驗機上設(shè)計了T型導(dǎo)軌三點壓彎實驗。通過理論解析結(jié)果與實驗數(shù)據(jù)的對比分析,探究了材料強化模型及強化參數(shù)的變化對導(dǎo)軌彎曲變形量的計算及高精度校直的影響。 第三章載荷-撓度關(guān)系模型不僅可以反映導(dǎo)軌彎曲過程的彈性變形、彈塑性變形和卸載彈性回彈三個階段,而且該模型提供了一種計算校直下壓量的新方法,適合直接應(yīng)用于壓力校直控制系統(tǒng)。為此,本章基于彈塑性彎曲理論對T型導(dǎo)軌彎曲載荷-撓度關(guān)系模型展開分析,建立T型導(dǎo)軌加載變形階段的載荷-撓度關(guān)系解析方程式,最后分別在電子萬能試驗機和自制的液壓壓彎校直機上進(jìn)行實驗以驗證模型的準(zhǔn)確性。 第四章重點在于T型導(dǎo)軌彎曲變形特性的實驗研究及有限元分析,將實驗研究和有限元結(jié)合起來,首先以神經(jīng)網(wǎng)絡(luò)為媒介,根據(jù)實驗數(shù)據(jù)建立導(dǎo)軌回彈量預(yù)測模型,研究了在一定的初始撓度下加載行程和回彈撓度之間的關(guān)系。同時,結(jié)合有限元模型研究材料特性參數(shù)對回彈量的影響,通過實驗數(shù)據(jù)和有限元分析數(shù)據(jù)建立了材料特性參數(shù)神經(jīng)網(wǎng)絡(luò)識別模型,最后將導(dǎo)軌壓彎回彈撓度的模擬結(jié)果與實驗結(jié)果進(jìn)行對比,以驗證本章所建立的有限元模型。 第五章針對T型電梯導(dǎo)軌屬于高精度長導(dǎo)軌,彎曲變形形狀通常比較復(fù)雜,可達(dá)兩至三個彎曲弧度,需要分兩段以上壓彎校直,提出了一種長導(dǎo)軌逐段壓彎及其校直彎曲模型,將導(dǎo)軌壓力彎曲工藝的研究進(jìn)一步擴展到多段壓彎及其校直應(yīng)用中。為要達(dá)到導(dǎo)軌逐段校直的目的,在此基礎(chǔ)上進(jìn)一步給出了一種導(dǎo)軌校直過程中壓力頭加載行程的計算方法。 第六章為了研究T型導(dǎo)軌彎曲卸載后殘余應(yīng)力分布狀態(tài),本章分別對導(dǎo)軌水平方向?qū)ΨQ彎曲和垂直方向非對稱彎曲回彈后的殘余應(yīng)力進(jìn)行分析,基于彈塑性彎曲理論推導(dǎo)出了導(dǎo)軌彎曲卸載后殘余應(yīng)力分布的解析表達(dá)式,同時還分析了壓力卸載過程中發(fā)生反向屈服現(xiàn)象的可能性。 第七章開發(fā)了一套集成機械、檢測、自動控制、通信和計算機等多項技術(shù)為一體的導(dǎo)軌自動壓彎校直控制系統(tǒng),分別基于彈塑性彎曲理論、導(dǎo)軌壓彎過程載荷-撓度關(guān)系模型和實驗數(shù)據(jù)總結(jié)了三種計算校直加載行程的方法,以便集成到本課題所開發(fā)的控制系統(tǒng)中。
[Abstract]:Bending straightening process is the last link of processing flow of T rail cutting, also improve the inevitable link straightness. Development of precision automatic straightening equipment will bring and stimulate research pressure straightening technology theory and Research on straightening technology theory must be from the guide rail bending process of elastic-plastic bending springback starting with the mechanism. Therefore, this paper based on the elastic-plastic theory, experimental study, springback characteristic finite element simulation method of T type guide rail are studied systematically, based on the guide of anti bending straightening technology theory is discussed. This paper mainly completed the following work:
In the first chapter, we introduce the background and significance of this topic, the research status quo of pressure bending and bending deformation straightening technology and related fields, the existing scientific problems and the main contents of this research.
In the second chapter, the calculation precision material hardening model and strengthening characteristic parameters of bending deformation of the workpiece has an important impact on the elastic-plastic bending theory of reinforced metal T type bending deformation of guide rail, established the mathematical model of residual springback curvature, curvature relationship, the design of T type rail three point bending experiments on electronic universal testing machine. Through comparative analysis of theoretical analysis results and experimental data, to explore the change of material hardening model and strengthening parameters on rail deformation calculation and high precision straightening effect.
The third chapter load deflection relationship model can not only reflect the track bending process of elastic deformation, elastic-plastic deformation and unloading springback of three stages, and the model provides a new method to calculate straightening press amount, the pressure straightening control system suitable for direct application. For this, this chapter is based on elastic-plastic bending the theoretical analysis of T type guide rail bending load deflection relationship model, the establishment of T type guide rail loading deformation stage load deflection relationship analytic equation, finally the electronic universal testing machine and hydraulic bending straightening machine made by experiment to verify the accuracy of the model.
The fourth chapter focuses on the experimental study on the characteristics of T type guide rail bending deformation and finite element analysis, experimental study and finite element combined with neural network for the media, first of all, according to the prediction model of springback guide to establish experimental data, investigated the relationship between load and deflection in the rebound stroke under certain initial deflection. At the same time, influence on springback with a finite element study on the material properties of the model parameters, the material parameters of neural network identification model was established by experimental data and finite element analysis data, the guide rail bending deflection springback simulation results and the experimental results were compared to verify the established finite element model presented in this chapter.
The fifth chapter in the elevator T guide rail belongs to the high precision long rail shape bending deformation are usually more complex, up to two to three bending radian, need more than two section bending straightening, a long rail segment and straightening bending bending model, study guide pressure bending process is further extended to the bending and its application straightening multi segment. In order to reach the purpose of straightening rail sections, this paper introduces a calculation method of pressure head loading stroke a rail alignment process.
The sixth chapter to study the T type guide rail bending residual stress distribution, this chapter to guide the horizontal direction and vertical direction of non symmetric bending residual stress after bending springback symmetric analysis, elastic-plastic bending theory derived from the guide rail bending residual stress distribution analytic solution based on the analysis, but also the possibility of reverse pressure yielding phenomenon during unloading.
The seventh chapter has developed a set of integrated mechanical, detection, automatic control, rail communication and computer technology as one of the automatic bending straightening control system, based on the elastic-plastic bending theory, rail bending process of load deflection relationship model and the experimental data are summarized three methods of calculating straightening stroke load, so as to control integration the system developed in this paper.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TU857
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高展;劉春旭;朱世忠;張建偉;;鋼管壓力矯直行程計算公式的理論研究[J];寶鋼技術(shù);2009年01期
2 楊海波,汪家才,王衛(wèi)平;重軌矯直過程應(yīng)力應(yīng)變模型的確定與分析[J];北京科技大學(xué)學(xué)報;1997年S1期
3 曹愛文;熊國良;;壓力校直技術(shù)的發(fā)展[J];鍛壓裝備與制造技術(shù);2007年01期
4 R.C.Spoorenberg;H.H.Snijder;J.C.D.Hoenderkamp;;輥彎曲寬翼緣構(gòu)件殘余應(yīng)力的有限元模擬[J];鋼結(jié)構(gòu);2011年01期
5 鮑珊,韓春明,肖峰;YH40型自動精密液壓校直機中的人機界面設(shè)計[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2003年03期
6 馮亞瓊;王昕;周荔丹;鄭益慧;;神經(jīng)網(wǎng)絡(luò)自適應(yīng)PI控制器在有源濾波器中的應(yīng)用[J];電力系統(tǒng)保護與控制;2011年16期
7 李駿,鄒慧君,熊國良;壓力校直工藝?yán)碚撗芯康默F(xiàn)狀與展望[J];機械設(shè)計與研究;2004年04期
8 王凱;王寶雨;;基于神經(jīng)網(wǎng)絡(luò)的電梯導(dǎo)軌多步校直彎曲形式預(yù)測[J];制造業(yè)自動化;2011年22期
9 張向軍,蔣守仁,桂長林;軸類零件校直設(shè)計理論和計算的修正研究[J];機械設(shè)計;1997年11期
10 孫杰,柯映林,吳群,許德;大型整體結(jié)構(gòu)件數(shù)控加工變形校正的關(guān)鍵技術(shù)研究[J];機械工程學(xué)報;2003年08期
,
本文編號:1410358
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1410358.html
本文關(guān)鍵詞:T型導(dǎo)軌壓力彎曲變形及其校直工藝?yán)碚撗芯?/strong> 出處:《浙江大學(xué)》2014年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: T型導(dǎo)軌 彈塑性彎曲 曲率 載荷-撓度關(guān)系 加載行程 逐段壓彎及校直 殘余應(yīng)力 控制系統(tǒng)
【摘要】:彎曲變形校直工藝過程是T型導(dǎo)軌切削加工流程中的最后環(huán)節(jié),也提高導(dǎo)軌直線度的必然環(huán)節(jié)。精密自動校直設(shè)備的發(fā)展必然會催生和激發(fā)壓力校直工藝?yán)碚摲矫娴难芯?而對校直工藝?yán)碚摰难芯勘仨氁獜膶?dǎo)軌壓彎過程的彈塑性彎曲回彈機理入手。因此,本論文分別基于彈塑性理論、實驗研究、有限元模擬等方法對T型導(dǎo)軌的彎曲回彈特性進(jìn)行了較為系統(tǒng)的研究,以此為基礎(chǔ)對導(dǎo)軌反彎校直工藝?yán)碚撨M(jìn)行了探討。本文主要完成了以下工作: 第一章介紹了本課題的研究背景和意義、壓力彎曲及彎曲變形校直工藝?yán)碚摷捌湎嚓P(guān)領(lǐng)域的研究現(xiàn)狀、存在的科學(xué)問題以及本文研究的主要內(nèi)容等。 第二章針對材料強化模型及強化特性參數(shù)對工件彎曲變形量的計算精度有著重要的影響,以彈塑性彎曲理論為基礎(chǔ)對強化性金屬T型導(dǎo)軌彎曲變形進(jìn)行研究,建立了導(dǎo)軌回彈曲率、殘留曲率關(guān)系的數(shù)學(xué)解析模型,在電子萬能試驗機上設(shè)計了T型導(dǎo)軌三點壓彎實驗。通過理論解析結(jié)果與實驗數(shù)據(jù)的對比分析,探究了材料強化模型及強化參數(shù)的變化對導(dǎo)軌彎曲變形量的計算及高精度校直的影響。 第三章載荷-撓度關(guān)系模型不僅可以反映導(dǎo)軌彎曲過程的彈性變形、彈塑性變形和卸載彈性回彈三個階段,而且該模型提供了一種計算校直下壓量的新方法,適合直接應(yīng)用于壓力校直控制系統(tǒng)。為此,本章基于彈塑性彎曲理論對T型導(dǎo)軌彎曲載荷-撓度關(guān)系模型展開分析,建立T型導(dǎo)軌加載變形階段的載荷-撓度關(guān)系解析方程式,最后分別在電子萬能試驗機和自制的液壓壓彎校直機上進(jìn)行實驗以驗證模型的準(zhǔn)確性。 第四章重點在于T型導(dǎo)軌彎曲變形特性的實驗研究及有限元分析,將實驗研究和有限元結(jié)合起來,首先以神經(jīng)網(wǎng)絡(luò)為媒介,根據(jù)實驗數(shù)據(jù)建立導(dǎo)軌回彈量預(yù)測模型,研究了在一定的初始撓度下加載行程和回彈撓度之間的關(guān)系。同時,結(jié)合有限元模型研究材料特性參數(shù)對回彈量的影響,通過實驗數(shù)據(jù)和有限元分析數(shù)據(jù)建立了材料特性參數(shù)神經(jīng)網(wǎng)絡(luò)識別模型,最后將導(dǎo)軌壓彎回彈撓度的模擬結(jié)果與實驗結(jié)果進(jìn)行對比,以驗證本章所建立的有限元模型。 第五章針對T型電梯導(dǎo)軌屬于高精度長導(dǎo)軌,彎曲變形形狀通常比較復(fù)雜,可達(dá)兩至三個彎曲弧度,需要分兩段以上壓彎校直,提出了一種長導(dǎo)軌逐段壓彎及其校直彎曲模型,將導(dǎo)軌壓力彎曲工藝的研究進(jìn)一步擴展到多段壓彎及其校直應(yīng)用中。為要達(dá)到導(dǎo)軌逐段校直的目的,在此基礎(chǔ)上進(jìn)一步給出了一種導(dǎo)軌校直過程中壓力頭加載行程的計算方法。 第六章為了研究T型導(dǎo)軌彎曲卸載后殘余應(yīng)力分布狀態(tài),本章分別對導(dǎo)軌水平方向?qū)ΨQ彎曲和垂直方向非對稱彎曲回彈后的殘余應(yīng)力進(jìn)行分析,基于彈塑性彎曲理論推導(dǎo)出了導(dǎo)軌彎曲卸載后殘余應(yīng)力分布的解析表達(dá)式,同時還分析了壓力卸載過程中發(fā)生反向屈服現(xiàn)象的可能性。 第七章開發(fā)了一套集成機械、檢測、自動控制、通信和計算機等多項技術(shù)為一體的導(dǎo)軌自動壓彎校直控制系統(tǒng),分別基于彈塑性彎曲理論、導(dǎo)軌壓彎過程載荷-撓度關(guān)系模型和實驗數(shù)據(jù)總結(jié)了三種計算校直加載行程的方法,以便集成到本課題所開發(fā)的控制系統(tǒng)中。
[Abstract]:Bending straightening process is the last link of processing flow of T rail cutting, also improve the inevitable link straightness. Development of precision automatic straightening equipment will bring and stimulate research pressure straightening technology theory and Research on straightening technology theory must be from the guide rail bending process of elastic-plastic bending springback starting with the mechanism. Therefore, this paper based on the elastic-plastic theory, experimental study, springback characteristic finite element simulation method of T type guide rail are studied systematically, based on the guide of anti bending straightening technology theory is discussed. This paper mainly completed the following work:
In the first chapter, we introduce the background and significance of this topic, the research status quo of pressure bending and bending deformation straightening technology and related fields, the existing scientific problems and the main contents of this research.
In the second chapter, the calculation precision material hardening model and strengthening characteristic parameters of bending deformation of the workpiece has an important impact on the elastic-plastic bending theory of reinforced metal T type bending deformation of guide rail, established the mathematical model of residual springback curvature, curvature relationship, the design of T type rail three point bending experiments on electronic universal testing machine. Through comparative analysis of theoretical analysis results and experimental data, to explore the change of material hardening model and strengthening parameters on rail deformation calculation and high precision straightening effect.
The third chapter load deflection relationship model can not only reflect the track bending process of elastic deformation, elastic-plastic deformation and unloading springback of three stages, and the model provides a new method to calculate straightening press amount, the pressure straightening control system suitable for direct application. For this, this chapter is based on elastic-plastic bending the theoretical analysis of T type guide rail bending load deflection relationship model, the establishment of T type guide rail loading deformation stage load deflection relationship analytic equation, finally the electronic universal testing machine and hydraulic bending straightening machine made by experiment to verify the accuracy of the model.
The fourth chapter focuses on the experimental study on the characteristics of T type guide rail bending deformation and finite element analysis, experimental study and finite element combined with neural network for the media, first of all, according to the prediction model of springback guide to establish experimental data, investigated the relationship between load and deflection in the rebound stroke under certain initial deflection. At the same time, influence on springback with a finite element study on the material properties of the model parameters, the material parameters of neural network identification model was established by experimental data and finite element analysis data, the guide rail bending deflection springback simulation results and the experimental results were compared to verify the established finite element model presented in this chapter.
The fifth chapter in the elevator T guide rail belongs to the high precision long rail shape bending deformation are usually more complex, up to two to three bending radian, need more than two section bending straightening, a long rail segment and straightening bending bending model, study guide pressure bending process is further extended to the bending and its application straightening multi segment. In order to reach the purpose of straightening rail sections, this paper introduces a calculation method of pressure head loading stroke a rail alignment process.
The sixth chapter to study the T type guide rail bending residual stress distribution, this chapter to guide the horizontal direction and vertical direction of non symmetric bending residual stress after bending springback symmetric analysis, elastic-plastic bending theory derived from the guide rail bending residual stress distribution analytic solution based on the analysis, but also the possibility of reverse pressure yielding phenomenon during unloading.
The seventh chapter has developed a set of integrated mechanical, detection, automatic control, rail communication and computer technology as one of the automatic bending straightening control system, based on the elastic-plastic bending theory, rail bending process of load deflection relationship model and the experimental data are summarized three methods of calculating straightening stroke load, so as to control integration the system developed in this paper.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TU857
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高展;劉春旭;朱世忠;張建偉;;鋼管壓力矯直行程計算公式的理論研究[J];寶鋼技術(shù);2009年01期
2 楊海波,汪家才,王衛(wèi)平;重軌矯直過程應(yīng)力應(yīng)變模型的確定與分析[J];北京科技大學(xué)學(xué)報;1997年S1期
3 曹愛文;熊國良;;壓力校直技術(shù)的發(fā)展[J];鍛壓裝備與制造技術(shù);2007年01期
4 R.C.Spoorenberg;H.H.Snijder;J.C.D.Hoenderkamp;;輥彎曲寬翼緣構(gòu)件殘余應(yīng)力的有限元模擬[J];鋼結(jié)構(gòu);2011年01期
5 鮑珊,韓春明,肖峰;YH40型自動精密液壓校直機中的人機界面設(shè)計[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2003年03期
6 馮亞瓊;王昕;周荔丹;鄭益慧;;神經(jīng)網(wǎng)絡(luò)自適應(yīng)PI控制器在有源濾波器中的應(yīng)用[J];電力系統(tǒng)保護與控制;2011年16期
7 李駿,鄒慧君,熊國良;壓力校直工藝?yán)碚撗芯康默F(xiàn)狀與展望[J];機械設(shè)計與研究;2004年04期
8 王凱;王寶雨;;基于神經(jīng)網(wǎng)絡(luò)的電梯導(dǎo)軌多步校直彎曲形式預(yù)測[J];制造業(yè)自動化;2011年22期
9 張向軍,蔣守仁,桂長林;軸類零件校直設(shè)計理論和計算的修正研究[J];機械設(shè)計;1997年11期
10 孫杰,柯映林,吳群,許德;大型整體結(jié)構(gòu)件數(shù)控加工變形校正的關(guān)鍵技術(shù)研究[J];機械工程學(xué)報;2003年08期
,本文編號:1410358
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1410358.html