基于TLP原理的海上風(fēng)機(jī)浮式基礎(chǔ)研究
本文關(guān)鍵詞:基于TLP原理的海上風(fēng)機(jī)浮式基礎(chǔ)研究 出處:《江蘇科技大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 漂浮式風(fēng)機(jī) TLP型浮式基礎(chǔ) 概念設(shè)計(jì) 動(dòng)力響應(yīng) 水動(dòng)力 結(jié)構(gòu)設(shè)計(jì) 載荷預(yù)報(bào) 總體強(qiáng)度 試驗(yàn)方案設(shè)計(jì)
【摘要】:海上蘊(yùn)含豐富的風(fēng)能,海上風(fēng)力發(fā)電為人類提供了大量可再生清潔能源。海上風(fēng)電從淺海的樁柱型向深海的漂浮式發(fā)展是必然趨勢(shì)。深海的漂浮式風(fēng)力發(fā)電已成為國(guó)外研究的熱點(diǎn)領(lǐng)域,但在我國(guó)尚處于起步階段。對(duì)海上浮式風(fēng)機(jī)而言,浮式基礎(chǔ)結(jié)構(gòu)顯得尤為重要,因此,急需開展海上風(fēng)機(jī)浮式基礎(chǔ)的研究。 本文參考IEC-61400-3規(guī)范(國(guó)際電工協(xié)會(huì)《海上風(fēng)機(jī)設(shè)計(jì)要求》)及DNV海上浮式平臺(tái)相關(guān)規(guī)范,對(duì)基于TLP原理的海上風(fēng)機(jī)浮式基礎(chǔ)進(jìn)行了概念設(shè)計(jì)及相關(guān)力學(xué)性能的系統(tǒng)研究。主要研究?jī)?nèi)容及相關(guān)結(jié)論如下: (1)對(duì)基于TLP原理的海上風(fēng)機(jī)浮式基礎(chǔ)進(jìn)行了概念設(shè)計(jì)。通過對(duì)不同平臺(tái)型式的特點(diǎn)分析,選定了TLP平臺(tái)基礎(chǔ)型式;初步確定了浮式基礎(chǔ)的主尺度。同時(shí)對(duì)概念設(shè)計(jì)的浮式基礎(chǔ)進(jìn)行了穩(wěn)性和運(yùn)動(dòng)性能初步計(jì)算,通過計(jì)算發(fā)現(xiàn)海上張力腿浮式風(fēng)機(jī)主要性能指標(biāo)均滿足要求,并對(duì)計(jì)算結(jié)果進(jìn)行了初步分析。 (2)對(duì)海上張力腿浮式風(fēng)機(jī)整體結(jié)構(gòu)進(jìn)行了動(dòng)力響應(yīng)研究。建立了全耦合一體化海上張力腿浮式風(fēng)機(jī)整體結(jié)構(gòu)有限元模型并對(duì)其進(jìn)行了動(dòng)態(tài)特性分析,分析發(fā)現(xiàn)浮式風(fēng)機(jī)系統(tǒng)的整體結(jié)構(gòu)固有頻率有效的避開風(fēng)輪激勵(lì)頻率和主要海浪頻率;選取風(fēng)機(jī)正常發(fā)電狀態(tài)下的工況對(duì)海上張力腿浮式風(fēng)機(jī)在風(fēng)浪流聯(lián)合作用下的動(dòng)態(tài)響應(yīng)進(jìn)行時(shí)域耦合仿真分析,并計(jì)算和分析了海上張力腿浮式風(fēng)機(jī)在特定風(fēng)浪組合下不同響應(yīng)變量的變化特點(diǎn);通過不同響應(yīng)變量的譜密度函數(shù)特征比較了不同風(fēng)速、不同波高對(duì)浮式風(fēng)機(jī)響應(yīng)變量的影響,分析發(fā)現(xiàn)在特定風(fēng)速范圍內(nèi),風(fēng)載荷對(duì)浮式風(fēng)機(jī)系統(tǒng)的影響要比波浪載荷大。 (3)對(duì)基于TLP原理的海上風(fēng)機(jī)浮式基礎(chǔ)進(jìn)行了水動(dòng)力性能研究。在頻域范圍內(nèi)計(jì)算了TLP型浮式基礎(chǔ)的水動(dòng)力系數(shù),,得到了一階波浪激勵(lì)力和六自由度運(yùn)動(dòng)響應(yīng)的RAO;通過對(duì)RAO進(jìn)行分析,給出了可能使TLP型浮式基礎(chǔ)處于危險(xiǎn)海況的波浪頻率范圍;并研究了張力腿預(yù)張力、張力腿剛度、張力腿長(zhǎng)度、張力筋腱根數(shù)等特征參數(shù)對(duì)浮式基礎(chǔ)運(yùn)動(dòng)響應(yīng)的影響;對(duì)TLP型浮式基礎(chǔ)受到的一階波浪激勵(lì)力和六自由度運(yùn)動(dòng)響應(yīng)分別進(jìn)行了短期和長(zhǎng)期預(yù)報(bào)。 (4)對(duì)基于TLP原理的海上風(fēng)機(jī)浮式基礎(chǔ)進(jìn)行了結(jié)構(gòu)設(shè)計(jì)。參考DNV海洋平臺(tái)規(guī)范,使用載荷抗力分項(xiàng)系數(shù)設(shè)計(jì)法選取不同極限狀態(tài)下的載荷系數(shù),確定了TLP型浮式基礎(chǔ)不同部位的設(shè)計(jì)載荷;根據(jù)設(shè)計(jì)載荷確定了浮式基礎(chǔ)不同部位的最小設(shè)計(jì)板厚以及加強(qiáng)筋和桁材的最小剖面模數(shù)。 (5)對(duì)基于TLP原理的海上風(fēng)機(jī)浮式基礎(chǔ)進(jìn)行了波浪載荷預(yù)報(bào)。建立了詳細(xì)的TLP型浮式基礎(chǔ)波浪載荷計(jì)算模型;計(jì)算了TLP型浮式基礎(chǔ)典型剖面載荷并得到了各工況下典型剖面載荷分量的傳遞函數(shù);完成了典型剖面載荷的長(zhǎng)期預(yù)報(bào),得到各工況下典型剖面載荷分量的長(zhǎng)期統(tǒng)計(jì)值,并確定了TLP型浮式基礎(chǔ)總體強(qiáng)度分析所需的設(shè)計(jì)波參數(shù)。 (6)對(duì)基于TLP原理的海上風(fēng)機(jī)浮式基礎(chǔ)進(jìn)行了總體強(qiáng)度分析。建立了TLP型浮式基礎(chǔ)總體強(qiáng)度分析的有限元模型;完成了不同載荷工況下TLP型浮式基礎(chǔ)總體強(qiáng)度計(jì)算;對(duì)TLP型浮式基礎(chǔ)的總體強(qiáng)度計(jì)算結(jié)果進(jìn)行分析并對(duì)高應(yīng)力區(qū)進(jìn)行討論,給出了影響TLP型浮式基礎(chǔ)總體強(qiáng)度的關(guān)鍵因素及修改意見。 (7)設(shè)計(jì)了海上張力腿浮式風(fēng)機(jī)縮尺比試驗(yàn)?zāi)P,進(jìn)行了試驗(yàn)方案設(shè)計(jì)。試驗(yàn)方案中擬安排主要測(cè)量海上張力腿浮式風(fēng)機(jī)在風(fēng)浪聯(lián)合作用下的運(yùn)動(dòng)響應(yīng)性能,以及風(fēng)載荷的模擬方法對(duì)于張力腿浮式風(fēng)機(jī)運(yùn)動(dòng)響應(yīng)的影響。
[Abstract]:The sea is rich in wind energy, offshore wind power provides a large number of renewable and clean energy for human beings. The floating offshore wind power development from shallow to deep water pile type is an inevitable trend. The floating wind power sea has become a hot research field abroad, but in China is still in its infancy. In terms of floating fan, floating foundation structure is particularly important, therefore, the research of offshore wind turbine floating foundation is urgently needed.
According to the IEC-61400-3 specification (International Electrotechnical Association "requirements for offshore wind turbine design >) and DNV floating platform specification, floating foundation of offshore wind turbines based on TLP principle makes a systematic research on the conceptual design and relevant mechanical properties. The main research contents and conclusions are as follows:
(1) on the conceptual design of floating foundation for offshore wind turbine based on TLP principle. Through the analysis of features of different types of platform, selected the TLP platform foundation; determined the main dimensions of the floating foundation. At the same time floating foundation for the conceptual design of stability and motion can be calculated, found by calculating the offshore tension leg floating wind turbine main performance indexes meet the requirements, and the results are analyzed.
(2) the overall structure of the floating offshore tension leg type fan is studied. A fully coupled dynamic response of integrated offshore tension leg floating wind machine finite element model of the whole structure and has carried on the analysis of dynamic characteristics analysis, found that the overall structure of the fan system inherent floating frequency effectively avoid the excitation frequency of wind wheel and the main wave frequency; selection of fan power under the normal condition analysis of time-domain dynamic coupling simulation of offshore tension leg floating fan in the wind and waves flow under the action of combined response, analyzed the change characteristics of offshore floating wind turbine tension leg in a specific combination of different waves of response variable is calculated and the different wind speed; by comparing the spectral characteristics of different density function of the response variable, different height of floating response variables affect the fan, analysis found in a specific wind speed range, the wind load on the floating wind turbine system The influence is larger than the wave load.
(3) on the floating foundation of offshore wind turbine based on TLP principle is studied. The hydrodynamic coefficients of hydrodynamic performance in frequency domain calculation of TLP type floating foundation, the first-order wave force response and six degree of freedom RAO; through the analysis of RAO wave frequency range is given can make TLP type floating foundation is in danger of the sea; and to study the tension leg tension, tension leg stiffness, tension leg length, the effects of tension tendon root number and other parameters on the response characteristics of floating foundation movement; short-term and long-term prediction of response and six degrees of freedom motion of one wave TLP floating foundation by the excitation force.
(4) to design the structure of floating foundation for offshore wind turbine based on TLP principle. DNV platform specification, using the partial coefficient of load resistance design method to select the load coefficient of different limit state, determine the design load of different parts of TLP type of floating foundation; according to the design load to determine the minimum design in different part of the floating foundation thick and the strengthening of minimum reinforcement and girder section modulus.
(5) on the floating foundation of offshore wind turbine based on TLP principle of wave load forecast model. The TLP type floating foundation wave load established in detail; calculation of TLP type floating foundation of typical section load and the transfer function is given under the condition of typical section load components; completed the long term prediction of typical section load, long-term statistics of typical section load components under different working conditions, and the design wave parameters analysis of TLP type floating foundation to determine the overall strength.
(6) on the floating foundation of offshore wind turbine based on TLP principle of the overall strength analysis. A finite element analysis of TLP type floating foundation for the overall strength of the model; complete the calculation of the overall strength of TLP type floating foundation under different loading conditions; the overall strength of TLP type floating foundation calculation results are analyzed and the high stress area is discussed. The key factors are the impact of type TLP floating foundation overall strength and revisions.
(7) the design of the floating offshore tension leg type fan scale model test, the test scheme was designed. The performance of response in the test program intends to arrange the main measuring offshore tension leg floating fan in the wind and waves of the movement, and the simulation method of wind load influence on the tension leg floating wind turbine movement response.
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU476.1;TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 倪安華;;我國(guó)海上風(fēng)力發(fā)電的發(fā)展與前景[J];安徽電力;2007年02期
2 郭列,朱勝昌,吳士沖,何富堅(jiān),黃振鴻;集裝箱船船體強(qiáng)度校核方法[J];船舶工程;1996年03期
3 江建協(xié),何炎平,譚家華,馮琪;30萬噸FPSO結(jié)構(gòu)強(qiáng)度分析研究[J];船舶工程;2005年05期
4 宋礎(chǔ);劉漢中;;海上風(fēng)力發(fā)電場(chǎng)開發(fā)現(xiàn)狀及趨勢(shì)[J];電力勘測(cè)設(shè)計(jì);2006年02期
5 胡志鵬;;國(guó)內(nèi)外能源結(jié)構(gòu)的變化及替代能源的發(fā)展前景[J];電器工業(yè);2008年10期
6 劉琦;許移慶;;世界海上風(fēng)電投資分析[J];電器工業(yè);2009年06期
7 薛清梅;王金柱;;大型海上風(fēng)力發(fā)電的開發(fā)[J];發(fā)電設(shè)備;2007年02期
8 王志新;王承民;艾芊;蔣傳文;房鑫炎;武黎;;近海風(fēng)電場(chǎng)關(guān)鍵技術(shù)[J];華東電力;2007年02期
9 沈又幸;郭玲麗;曾鳴;;丹麥風(fēng)電發(fā)展經(jīng)驗(yàn)及對(duì)我國(guó)的借鑒[J];華東電力;2008年11期
10 岳吉祥;綦耀光;肖文生;楊磊;楊軼普;;基于作業(yè)流程的深水半潛式鉆井平臺(tái)總體布局規(guī)劃研究(英文)[J];Journal of Marine Science and Application;2009年02期
相關(guān)博士學(xué)位論文 前2條
1 任年鑫;海上風(fēng)力機(jī)氣動(dòng)特性及新型浮式系統(tǒng)[D];哈爾濱工業(yè)大學(xué);2011年
2 趙靜;海上風(fēng)力機(jī)系統(tǒng)流體動(dòng)力性能數(shù)值模擬與試驗(yàn)研究[D];哈爾濱工程大學(xué);2012年
本文編號(hào):1393850
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1393850.html