自適應索桿張力結構的理論研究與試驗
本文關鍵詞:自適應索桿張力結構的理論研究與試驗 出處:《浙江大學》2014年博士論文 論文類型:學位論文
更多相關文章: 自適應 索桿張力結構 主動單元 形態(tài)控制 位置優(yōu)化 優(yōu)化算法
【摘要】:變長度單元自適應索桿張力結構,是以主動單元長度變化為調控手段,通過改變結構幾何形態(tài)以提高適應環(huán)境變化能力的一類智能結構。本文以變長度單元自適應索桿張力結構的形態(tài)控制為目標,從索桿張力結構受力特性出發(fā),圍繞主動單元調控長度計算和最優(yōu)數量及位置分布等關鍵技術進行了深入研究。 綜合運用平衡矩陣分解理論、非線性規(guī)劃理論、以及非線性有限元理論對變長度單元自適應索桿張力結構的力學基礎進行了系統(tǒng)分析,推導了結構對單元長度變化的非線性響應計算公式,并提出了求解策略。所提出的理論分析方法及算法適用于任意荷載工況下的任意類型索桿張力結構,為自適應索桿張力結構的分析提供了理論基礎。 以張力結構形狀和內力控制為目標,以主動單元長度調控量為未知量,基于非線性有限元理論,推導了目標響應與主動單元長度調控量的增量關系式,提出了增量迭代求解策略及誤差反饋迭代求解策略。進一步,考慮單元內力約束及主動單元調控長度限制等條件,建立了自適應索桿張力結構的形態(tài)非線性優(yōu)化控制數學模型,從目標響應與主動長度調控量之間的有限元增量關系出發(fā),提出了基于序列二次規(guī)劃法SQP的求解策略。 基于有限元平衡方程,推導了結構響應對主動單元長度變化的靈敏度計算公式,同時建立了自適應行為中的形狀控制、內力控制以及剛度控制等多目標函數對所有主動單元調控量的一階、二階靈敏度矩陣,為序列二次規(guī)劃法求解策略提供了梯度信息。利用所推導靈敏度公式,對Geiger索穹頂和張拉整體結構進行結構響應的靈敏度分析,探討了索單元及桿單元類型分別作為主動單元的調控效率,提出了在不同自適應目標下,兩類結構中主動單元的選擇準則,為主動單元的布設提供參考。 基于精確可控條件,利用線性方程組的性質,通過對調控增量計算系數矩陣的分析,揭示了主動單元數量及位置與方程組解之間的數學關系,提出了主動單元數量與位置的布設準則。建立了以調控增量最小為目標的最優(yōu)位置優(yōu)化數學模型,提出了基于遺傳算法的求解策略。進一步,以最小化形態(tài)控制誤差、主動單元調控長度以及主動單元數量為目標函數,建立了以主動單元分布向量和調控長度為變量的混合變量多目標優(yōu)化控制模型,提出了基于非支配排序遺傳算法NSGA-Ⅱ和序列二次規(guī)劃法SQP的分層求解策略。該算法獲得的結果能直觀地顯示各目標函數最優(yōu)解之間的矛盾關系,為決策者制定最合理方案提供了理論參考。 在理論分析基礎上,設計了具有長度可調單元的Geiger索穹頂模型進行試驗研究,考察了模型在張拉成形過程、調控響應過程、以及加載調節(jié)過程中的結構響應。試驗結果數據分析表明,試驗模型的預應力分布情況與理論計算值一致,結構對于各類主動單元的長度變化響應靈敏度與理論分析趨勢保持一致,由理論控制方案指導進行的荷載態(tài)形態(tài)調控試驗結果良好,驗證了本文理論計算模型的正確性。 根據本文所提出的相關算法策略,采用MATLAB軟件編制了相應程序,所有程序均具有通用性,能對任意給定幾何拓撲和約束等條件的索桿張力結構進行系統(tǒng)分析和調控計算,為索桿張力結構的調控提供了有效的數值分析工具。
[Abstract]:Variable length unit Adaptive Cable strut structure, is the active unit length change control means, through a kind of intelligent structure to improve the ability to adapt to the changing environment and change the structure of geometry. In this paper, the adaptive variable length unit of cable strut structure shape control as the goal, starting from the stress characteristics of cable strut structure, around the key the technology of active control unit length calculation and the optimal number and location are studied deeply.
The comprehensive use of the equilibrium matrix decomposition theory, nonlinear programming theory and nonlinear finite element theory has carried on the system analysis of cable strut structure on the mechanical basis of variable length unit adaptive calculation formula of nonlinear response of structure of unit length variation is deduced, and puts forward the solving strategy. Any type of theoretical analysis method and the proposed algorithm is applicable to arbitrary load conditions of cable strut structure, provides a theoretical basis for the adaptive analysis of cable strut structure.
The tension structure and internal control as the goal, to active unit length regulation is unknown, based on nonlinear finite element theory, the target response increment with active unit length regulation volume formula, proposed an iterative solving strategy and error feedback incremental iteration strategy. Further, considering the constraint element internal forces and active unit the regulation length constraints, an adaptive nonlinear optimal control mathematical model of cable strut structure form, starting from the target response finite element incremental and the relationship between the amount of active length regulation, a sequence of two quadratic programming method solving strategy based on SQP.
Finite element equilibrium equation is deduced based on structural response sensitivity of active unit length variation formula, and establish the shape control of adaptive behavior in the internal control and stiffness control objective function for all active unit control quantity of one order, two order sensitivity matrix, provide gradient information to sequence two a programming method for solving strategy. Using the derived sensitivity formula, analysis on sensitivity of structure response of cable dome and tensegrity structure of Geiger, discusses the cable element and bar element types were used as control efficiency of active unit, put forward the different adaptive target selection criteria, active elements of two kinds of structure, provide the reference for the layout of active units.
The precise control based on the properties of the linear equations, through the analysis and calculation of the coefficient matrix of the incremental regulation, reveals the mathematical relationship between the solutions of the active element number and position and equations, the author proposes the layout criterion on active unit quantity and location. To establish a control of optimal location optimization model for minimizing the increment and put forward solving strategy based on genetic algorithm. Further, to minimize the error of shape control, active control unit length and active element number as the objective function, is established with the active unit distribution vector and regulation length control model of multi-objective optimization of mixed variables, the non dominated sorting genetic algorithm II NSGA- and sequence two planning method of SQP hierarchical solving strategy based on the results of the algorithm can visually display the contradiction between the objective function optimal solution, as will The policy makers provide the theoretical reference for the most reasonable plan.
On the basis of theoretical analysis, design with adjustable length unit of Geiger cable dome model were studied. The studied model in stretch forming process, the regulation of response, response of structure and the loading in the regulation process. The experimental data analysis results show that the prestress distribution test and theoretical calculation value of the model, structure the length change of all kinds of active element sensitivity trend is consistent with theoretical analysis, the theoretical guidance of the load control scheme forms regulation experiment results verify the correctness of the calculation model of the theory in this paper.
According to the algorithm proposed by this paper, and the corresponding program is designed by MATLAB software, all procedures are universal, for any given topology and geometric constraint conditions of the cable strut structure system analysis and control calculation, provide an effective analysis tool for the numerical control of cable strut structure.
【學位授予單位】:浙江大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TU399
【參考文獻】
相關期刊論文 前10條
1 隋允康,邵建義,葉寶瑞;具有機電耦合的自適應超靜定桁架應力最優(yōu)控制(英文)[J];北京工業(yè)大學學報;2002年01期
2 龍連春,隋允康,葉寶瑞;空間智能結構的一種最優(yōu)調控方法[J];北京工業(yè)大學學報;2003年02期
3 唐紀曄,黃海,夏人偉,黃海博;壓電層合板自適應結構的靜力變形控制[J];北京航空航天大學學報;2000年02期
4 咸奎成;黃海;;自適應壓電桁架形狀控制中作動器優(yōu)化配置[J];北京航空航天大學學報;2007年05期
5 顧元憲,趙國忠,李云鵬;復合材料層合板屈曲穩(wěn)定性優(yōu)化設計及其靈敏度計算方法[J];復合材料學報;2002年04期
6 袁行飛,董石麟;索穹頂結構的新形式及其初始預應力確定[J];工程力學;2005年02期
7 任濤;陳務軍;付功義;;索桿張力結構初始預應力分布計算方法研究[J];工程力學;2008年05期
8 許賢;羅堯治;沈雁彬;;張力結構的動態(tài)控制研究[J];工程力學;2011年05期
9 隋允康,邵建義;自適應超靜定桁架結構強度控制的研究[J];固體力學學報;2001年02期
10 趙國忠,顧元憲,李云鵬;壓電智能桁架的靈敏度分析與優(yōu)化設計[J];固體力學學報;2002年02期
相關博士學位論文 前1條
1 許賢;張拉整體結構的形態(tài)理論與控制方法研究[D];浙江大學;2009年
,本文編號:1393768
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1393768.html