日照鋼鐵360m~2燒結(jié)機(jī)過(guò)程自動(dòng)控制系統(tǒng)的分析與設(shè)計(jì)
[Abstract]:At present, large and medium-sized sintering machines in China have the capability of process detection and equipment control. It is urgent to study and develop the sintering process control method and develop the sintering process automatic control system of our country's independent intellectual property rights. This paper is based on the automatic sintering control system of Rizhao Iron and Steel holding Group Co., Ltd., through consulting a large number of references and familiar with the field sintering process. It also has a deeper understanding of the instrument selection standard of sintering system, the hardware and software structure of PLC and host computer, network communication and so on. Combined with the process requirements and control instructions, the hardware selection, installation, debugging and software programming of the automatic proportioning control system were completed. Due to the influence of the permeability of the material layer or the defect of the equipment, it is difficult to obtain the ideal position of the sintering end point directly in the actual production process, so that the closed loop control of the sintering end point can not be realized. In this paper, a fuzzy wavelet neural network is introduced, and a multiscale wavelet approximation method is proposed, which combines feedforward and feedback. Referring to the fuzzy control model at home and abroad, the paper uses fuzzy wavelet neural network control algorithm to predict the sintering end point, and establishes a simple model of sintering machine based on the temperature curve of bellows exhaust gas, which is obtained from the field, and the control algorithm of fuzzy wavelet neural network is used to predict the sintering end point. Under the condition that the model can be simulated stably, the model is modeled and simulated by Matlab and compared with Elman neural network predictive control. The simulation results show that the predictive control algorithm for the sintering end point is superior to the Elman neural network control algorithm in theory.
【學(xué)位授予單位】:河北工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP273.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳勝利;陳東峰;趙成顯;薛方;;基于燒結(jié)過(guò)程各帶遷移規(guī)律的燒結(jié)終點(diǎn)預(yù)報(bào)方法[J];北京科技大學(xué)學(xué)報(bào);2009年09期
2 王亞剛;邵惠鶴;;自整定PID控制器的研究綜述[J];電氣自動(dòng)化;2000年01期
3 王宏文;蔣君杰;吳玲玲;唐永學(xué);;WinCC監(jiān)控系統(tǒng)在燒結(jié)過(guò)程中的應(yīng)用[J];河北工業(yè)大學(xué)學(xué)報(bào);2011年01期
4 李明河,王群京,孫雁飛;基于神經(jīng)網(wǎng)絡(luò)的燒結(jié)終點(diǎn)預(yù)報(bào)的研究[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年06期
5 李桃,馮其明,范曉慧,姜濤;基于自組織神經(jīng)網(wǎng)絡(luò)的燒結(jié)終點(diǎn)自適應(yīng)預(yù)報(bào)系統(tǒng)的開發(fā)[J];計(jì)算機(jī)工程與應(yīng)用;2001年06期
6 王海東,邱冠周,黃圣生;燒結(jié)過(guò)程控制技術(shù)的發(fā)展[J];礦冶工程;1999年03期
7 袁廷奇,劉文江;基于Haar小波變換的連續(xù)時(shí)間系統(tǒng)魯棒參數(shù)辨識(shí)[J];控制與決策;2000年03期
8 鄭軍,顏文俊,諸靜;基于小波逼近和尺度變換的非參數(shù)辨識(shí)方法[J];控制與決策;2004年10期
9 吳為民;燒結(jié)混合料水分檢測(cè)及智能控制系統(tǒng)[J];燒結(jié)球團(tuán);1997年04期
10 胡長(zhǎng)慶,張玉柱;燒結(jié)過(guò)程中的傳輸理論[J];燒結(jié)球團(tuán);2000年03期
相關(guān)博士學(xué)位論文 前2條
1 王春生;鉛鋅燒結(jié)配料過(guò)程的智能集成建模與優(yōu)化控制策略研究[D];中南大學(xué);2008年
2 李洋;小波過(guò)程神經(jīng)網(wǎng)絡(luò)相關(guān)理論及其應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2008年
本文編號(hào):2334491
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/2334491.html