壓鑄模具激光仿生強(qiáng)化工藝決策系統(tǒng)研究
[Abstract]:The application of laser surface bionic strengthening technology to improve the service life of mould is a new topic in recent years. It is an important application of bionics in the field of mould industry and brings great economic benefits to die industry. The standardization of laser bionic strengthening technology is helpful to its development and popularization in the future. Based on the theory of artificial neural network, the highly nonlinear relationship between the shape of laser coagulation unit and the laser processing technology is regarded as a "black box", and the cross section size of the fusion unit is regarded as the input of neural network. Laser process parameters are used as the output of neural network, and the inverse model of laser melting parameters is established. The structural analysis method is used to divide the function modules and design the structure of the process decision system for the laser bionic strengthening of die casting die. Based on the overall function of the system, the material table of die casting die, the parameter table of laser process, the result table of melting, the bionic form table, the table of thermal fatigue performance and the table of friction and wear performance, and the relationship between the table and the table are designed. The database of laser bionic strengthening process for die casting die was established. With Visual C 6.0 as the development platform, the man-machine interactive interface is designed by modular programming, and a die casting mould laser bionic strengthening process decision system with independent intellectual property rights is developed. Finally, taking DIEVAR die steel as an example, the cross section size and microstructure of laser solidifying unit are analyzed. Four aspects of microhardness and thermal fatigue performance of the die casting die laser bionic strengthening process decision-making system decision-making accuracy and overall performance were tested. The results show that the stability of the system is good, the decision accuracy can reach 1.33, and the hardness of the material is increased by 40 ~ 100 HVV, and the thermal fatigue property is also improved significantly after the reverse laser processing parameters are fused and solidified. The system is applied to the actual die strengthening process. The operation shows that the service life of the strengthened die is increased by about 70%.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TG665;TG233.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王大康,劉永峰,石亞寧;智能化CAPP系統(tǒng)的工藝決策[J];北京工業(yè)大學(xué)學(xué)報(bào);2003年02期
2 李紅良;;智能決策支持系統(tǒng)的發(fā)展現(xiàn)狀及應(yīng)用展望[J];重慶工學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年10期
3 路曉;管自生;;自清潔仿生表面的濕潤性及其制備的進(jìn)展[J];材料導(dǎo)報(bào);2006年06期
4 周宏,張志輝,任露泉,宋起飛,陳莉;仿生非光滑表面45~#鋼模具的熱疲勞性能[J];材料科學(xué)與工藝;2004年06期
5 潘清躍,宋仁國,張奇志,黃衛(wèi)東,周堯和;基于人工神經(jīng)網(wǎng)絡(luò)-遺傳算法的1Cr18Ni9Ti鋼激光表面熔凝工藝優(yōu)化[J];材料研究學(xué)報(bào);1998年03期
6 胡巧玲,李曉東,沈家驄;仿生結(jié)構(gòu)材料的研究進(jìn)展[J];材料研究學(xué)報(bào);2003年04期
7 劉曉芳,劉會(huì)金,陳允平;人工智能技術(shù)在電能質(zhì)量分析中的應(yīng)用[J];電工技術(shù)雜志;2004年12期
8 劉白林;劉震;;基于VC6.0的武器系統(tǒng)故障診斷專家系統(tǒng)實(shí)現(xiàn)[J];彈箭與制導(dǎo)學(xué)報(bào);2006年03期
9 萬魯河;王繼富;臧淑英;崔金香;;基于空間數(shù)據(jù)挖掘技術(shù)的森林防火智能決策支持系統(tǒng)研究[J];地理科學(xué);2009年03期
10 湯素麗;羅宇鋒;;人工神經(jīng)網(wǎng)絡(luò)技術(shù)的發(fā)展與應(yīng)用[J];電腦開發(fā)與應(yīng)用;2009年10期
本文編號(hào):2209278
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/2209278.html