天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于高精度定位的地震勘探采集處理一體化研究

發(fā)布時(shí)間:2018-08-04 09:10
【摘要】:GPS技術(shù)在國民經(jīng)濟(jì)的各個(gè)方面使用越來越廣,地質(zhì)勘探領(lǐng)域較早引入了GPS技術(shù),也是應(yīng)用較廣的領(lǐng)域,已經(jīng)廣泛應(yīng)用于地質(zhì)勘探的方方面面。目前較為常規(guī)的使用方法主要有2種:一種是利用普通手持式GPS進(jìn)行精度要求較低(允許誤差10m左右)環(huán)境下的定位,如野外地質(zhì)考察、地質(zhì)取樣、大尺度的重力勘探、電法勘探、磁法勘探等。二是利用專用的差分GPS技術(shù)和設(shè)備,定位精度可以達(dá)到厘米級(jí)甚至毫米級(jí),廣泛用于要求定位精度較高的場(chǎng)合,如地震勘探中炮點(diǎn)和接收點(diǎn)測(cè)量、小尺度的地球物理勘探及工程勘探,大地位移測(cè)量及滑坡監(jiān)測(cè)等場(chǎng)合。 上述兩種方法在百道/千道級(jí)別的小規(guī)模地球物理勘探領(lǐng)域不存在時(shí)間和成本問題,但在萬道/十萬道級(jí)的3D地震勘探施工中需要反復(fù)進(jìn)行數(shù)十萬個(gè)接收點(diǎn)的定位測(cè)量,時(shí)間和價(jià)格成本嚴(yán)重制約了3D地震勘探的發(fā)展。依靠普通手持GPS定位裝置,無法完成高精度定位,遍歷接收點(diǎn)的人工成本極高;采用實(shí)時(shí)RTK技術(shù)的差分GPS設(shè)備和全站儀,每臺(tái)價(jià)格動(dòng)輒數(shù)萬元。這些高額的設(shè)備成本和大量的人工成本導(dǎo)致了目前在大規(guī)?碧街兄荒軐(duì)進(jìn)行部分控制點(diǎn)的高精度GPS定位,其他點(diǎn)則采用目測(cè)或測(cè)量繩進(jìn)行估計(jì),測(cè)量精度達(dá)不到現(xiàn)代高精度勘探的要求。而且由于是先測(cè)量后布設(shè)儀器的操作規(guī)程,存在設(shè)置的測(cè)量標(biāo)志(小旗)被自然和人為因素毀壞的情況。地震勘探行業(yè)一直希望在每一個(gè)測(cè)量點(diǎn)(檢波器)上均具有GPS功能,在野外可以實(shí)時(shí)測(cè)量每一個(gè)測(cè)量點(diǎn)(檢波器)的位置,從而提高測(cè)量點(diǎn)(檢波器)的位置精度,提高三維地震勘探的精度。但是針對(duì)采集站上集成的普通GPS芯片,其定位精度是很低的,范圍在幾米到幾十米之間,這遠(yuǎn)遠(yuǎn)達(dá)不到地震勘探采集站定位的需求。 所以,若能將載波相位差分(RTK)技術(shù)應(yīng)用到普通GPS接收機(jī)中,實(shí)現(xiàn)采集站上GPS芯片低成本高精度定位,解決3D地震勘探中的時(shí)間和成本問題,將具有現(xiàn)實(shí)深遠(yuǎn)意義。但是,在國際激烈競(jìng)爭(zhēng)環(huán)境中,美國處于自身軍事、國防和經(jīng)濟(jì)利益的考慮,這一技術(shù)對(duì)外是封鎖的,國內(nèi)只是代理他們的外包產(chǎn)品。針對(duì)上述問題,本文采用普通的價(jià)格低廉的GPS-OEMSTAR開發(fā)板,通過學(xué)習(xí)研究基于GPS星歷解算原理和GPS靜態(tài)相對(duì)定位中的載波相位差分原理(RTK),開發(fā)了具有自主知識(shí)產(chǎn)權(quán)的地震勘探專用GPS數(shù)據(jù)接收技術(shù),GPS星歷解算技術(shù)和地震勘探專用GPS差分相對(duì)定位技術(shù),重點(diǎn)推導(dǎo)了具有自主知識(shí)產(chǎn)權(quán)的基于OEMSTAR開發(fā)板的地震勘探專用GPS差分定位公式,它需要將基準(zhǔn)站和流動(dòng)站的差分觀測(cè)方程線性化,消除基準(zhǔn)站和流動(dòng)站與衛(wèi)星及接收機(jī)有關(guān)的載波相位和鐘差,并列出其相應(yīng)的誤差方程式和法方程式,依據(jù)最小二乘平差原理求出基線向量,通過基準(zhǔn)站已知坐標(biāo),使普通GPS定位精度從十米級(jí)提高到厘米級(jí),成功研制了GPS數(shù)據(jù)接收軟件和GPS數(shù)據(jù)處理軟件,完成了一套基于GPS—OEMSTAR開發(fā)板的地震勘探專用GPS差分定位系統(tǒng),并通過實(shí)際數(shù)據(jù)的接收和處理,證明了該方案的實(shí)用性和可行性,同時(shí)依據(jù)地震勘探超多GPS有序排列等特點(diǎn),實(shí)現(xiàn)GPS低成本高精度定位,滿足地震勘探的需求。并在此基礎(chǔ)上,提出了基于云計(jì)算的3D地震勘探專用GPS定位方法研究,該方法通過開展高速并行信息同步采集機(jī)制、實(shí)時(shí)GPS軟件信號(hào)處理方法和高性能勘探定位模型三個(gè)方面的研究,解決大規(guī)?碧綄S肎PS定位云中的云端的采集、存儲(chǔ)和傳輸問題,研究云服務(wù)中的信息協(xié)作、處理和調(diào)度問題,建立針對(duì)大規(guī)模勘探應(yīng)用的位置云模型,實(shí)現(xiàn)高性能的差分定位方法,完成面向大規(guī)?碧綄S肎PS定位機(jī)制的研究,為未來3D地震勘探的發(fā)展提供了技術(shù)支持。在高精度定位的基礎(chǔ)上,我們又提出了地震勘探定位、采集、處理一體化的設(shè)想,并對(duì)地震資料處理的第一步靜校正做了研究,得到了一個(gè)P波和轉(zhuǎn)換波都適用的基于波場(chǎng)延拓的靜校正方法,通過模擬和實(shí)際數(shù)據(jù)的處理,證明了該方法的可行性和有效性。其中在實(shí)際數(shù)據(jù)處理的過程中,我們用基于OEMSTAR開發(fā)板的地震勘探專用GPS差分定位方法獲得了檢波器對(duì)應(yīng)地表的高程數(shù)據(jù),并將其應(yīng)用到了靜校正的延拓過程中,取得了不錯(cuò)的效果,這也證明了定位采集處理一體化的思路是正確的。 本文首先總結(jié)分析了當(dāng)前地震勘探在GPS定位技術(shù)中存在的時(shí)間和成本問題,,指出未來3D地震勘探對(duì)定位技術(shù)的發(fā)展需要,從而引出用差分技術(shù)對(duì)普通GPS芯片實(shí)現(xiàn)低成本高精度定位的思想,對(duì)差分技術(shù)和國內(nèi)外差分系統(tǒng)的建設(shè)進(jìn)行概述,明確了地震勘探GPS差分定位系統(tǒng)的廣闊前景;接著介紹分析了GPS衛(wèi)星信號(hào)的組成和GPS衛(wèi)星星歷,總結(jié)了C/A碼和P碼的特點(diǎn),對(duì)GPS導(dǎo)航電文的組成格式進(jìn)行了說明,重點(diǎn)介紹了其中的星歷參數(shù)以及每個(gè)參數(shù)所代表的具體意義,為后續(xù)星歷解算技術(shù)奠定基礎(chǔ);然后對(duì)GPS定位存在的各方面誤差進(jìn)行分析,指出差分的必要性,并對(duì)差分的三種方法:位置差分、偽距差分和載波相位差分加以說明,并分析其各自優(yōu)缺點(diǎn),在此基礎(chǔ)上,提出將來要建設(shè)的地震勘探GPS差分系統(tǒng),突出數(shù)據(jù)鏈路的重要性;隨后對(duì)地震勘探專用GPS差分協(xié)議RTCM電文進(jìn)行說明,并對(duì)地震勘探偽距差分經(jīng)常用到的電文類型18、19和地震勘探載波相位差分經(jīng)常用到的電文20、21加以分析,并總結(jié)了這4種電文的相同和不同之處,依據(jù)奇偶校驗(yàn)法和位變換法,設(shè)計(jì)了地震勘探專用GPS差分協(xié)議編碼和解碼的流程;緊接著介紹OEMSTAR開發(fā)板的性能指標(biāo)、技術(shù)參數(shù)、數(shù)據(jù)接口及RINEX數(shù)據(jù)格式,重點(diǎn)推導(dǎo)了基于OEMSTAR開發(fā)板的地震勘探專用GPS差分定位公式,它需要將基準(zhǔn)站和流動(dòng)站的差分觀測(cè)方程線性化,消除基準(zhǔn)站和流動(dòng)站與衛(wèi)星及接收機(jī)有關(guān)的載波相位和鐘差,并列出其相應(yīng)的誤差方程式和法方程式,依據(jù)最小二乘平差原理即可求出,在此基礎(chǔ)上,我們提出了基于云計(jì)算的3D地震勘探專用GPS定位方法研究,通過引入云計(jì)算的模型,對(duì)勘探云的云采集、云存儲(chǔ)、云傳輸、云協(xié)作、云處理機(jī)制進(jìn)行研究,建立面向勘探定位的云模型,實(shí)現(xiàn)勘探專用的GPS差分高精度定位處理方法,開展實(shí)際仿真和實(shí)驗(yàn)驗(yàn)證,研制大規(guī)?碧綄S肎PS定位方法的原型系統(tǒng),達(dá)到降低大規(guī)模GPS終端成本的效果;最后開發(fā)了GPS數(shù)據(jù)的接收技術(shù),研究了GPS星歷解算技術(shù),設(shè)計(jì)了基于OEMSTAR開發(fā)板的地震勘探專用GPS差分定位算法流程,通過實(shí)際實(shí)驗(yàn),從正面的相對(duì)誤差及實(shí)際誤差和側(cè)面的東北天位置、東北天位置標(biāo)準(zhǔn)偏差、距離和模糊度漂移率等幾個(gè)方面對(duì)算法做了詳細(xì)的論證,得出了算法的精度在厘米級(jí)的結(jié)論,同時(shí)算法的穩(wěn)定性也很高,完全滿足了地震勘探的需求。為大規(guī)?碧綄S肎PS定位方法的應(yīng)用提供技術(shù)儲(chǔ)備。在高精度定位的基礎(chǔ)上,我們又提出了地震勘探定位、采集、處理一體化的設(shè)想,并對(duì)地震資料處理的第一步靜校正做了研究,得到了一個(gè)P波和轉(zhuǎn)換波都適用的基于波場(chǎng)延拓的靜校正方法,通過模擬和實(shí)際數(shù)據(jù)的處理,證明了該方法的可行性和有效性。其中在實(shí)際數(shù)據(jù)處理的過程中,我們用基于OEMSTAR開發(fā)板的地震勘探專用GPS差分定位方法獲得了檢波器對(duì)應(yīng)地表的高程數(shù)據(jù),并將其應(yīng)用到了靜校正的延拓過程中,取得了不錯(cuò)的效果,這也證明了定位采集處理一體化的思路是正確的。 本文通過對(duì)GPS低成本高精度定位的研究,共取得以下一些成果: (1)研發(fā)了具有自主知識(shí)產(chǎn)權(quán)的基于OEMSTAR開發(fā)板的地震勘探專用GPS數(shù)據(jù)接收技術(shù)、地震勘探GPS星歷解算技術(shù)、地震勘探GPS差分定位技術(shù)。 (2)推導(dǎo)了基于OEMSTAR開發(fā)板的地震勘探專用GPS差分定位公式,設(shè)計(jì)了地震勘探專用GPS差分電文的編碼和解碼流程,并通過實(shí)際實(shí)驗(yàn),實(shí)現(xiàn)了地震勘探GPS低成本高精度定位。 (3)開發(fā)了一套基于OEMSTAR開發(fā)板的地震勘探專用GPS數(shù)據(jù)接收軟件和GPS數(shù)據(jù)處理軟件。 (4)提出了基于云計(jì)算的3D地震勘探專用GPS定位技術(shù)和未來3D地震勘探定位、采集和處理設(shè)備一體化的思想,并對(duì)地震資料處理的第一步靜校正做了研究,得到了一個(gè)P波和轉(zhuǎn)換波都適用的基于波場(chǎng)延拓的靜校正方法,并用地震勘探專用GPS差分定位方法獲得了檢波器對(duì)應(yīng)地表的高程數(shù)據(jù),兩者結(jié)合,取得了不錯(cuò)的處理效果。
[Abstract]:GPS technology is becoming more and more widely used in all aspects of the national economy. GPS technology is introduced earlier in the field of geological exploration, and it is also widely applied to all aspects of geological exploration. At present, there are 2 main methods of common use: one is to use ordinary handheld GPS for low precision (allowable error 10). Around m) the location of the environment, such as field geological survey, geological sampling, large scale gravity exploration, electric prospecting, magnetic prospecting, etc. Two, using special differential GPS technology and equipment, the positioning accuracy can reach centimeter level or even millimeter level, and is widely used for places with high positioning precision, such as the measurement of cannon points and receiving points in seismic exploration. Small scale geophysical prospecting and engineering exploration, geodetic displacement measurement and landslide monitoring.
The above two methods have no time and cost problems in the field of small scale geophysical exploration in 100 Dao / kilo level. But in the 3D seismic exploration and construction of Wan Dao / one hundred thousand channel, the location and measurement of hundreds of thousands of receiving points need to be repeated. The time and price cost seriously restrict the development of 3D seismic exploration. It depends on the ordinary handheld GPS. The position device can not complete the high precision positioning and traverses the artificial cost of the receiving point. The price of the differential GPS equipment and the total station with real time RTK technology are often tens of thousands of yuan. These high cost of equipment and a large number of artificial costs lead to the high precision GPS positioning for some control points in the large-scale exploration. His point is estimated by visual or measuring rope, and the accuracy of the measurement is not up to the requirements of modern high precision exploration. And because it is the first measure to set up the operating rules of the instrument, the setting of the measurement sign (small flag) is destroyed by the natural and human factors. The seismic prospecting industry has always hoped to have every measuring point (geophone). With GPS function, the location of each measurement point (geophone) can be measured in real time in the field, thus improving the position accuracy of the measuring point (geophone) and improving the accuracy of 3D seismic exploration. However, the positioning accuracy is very low for the integrated GPS chip integrated on the acquisition station, ranging from a few meters to dozens of meters, which is far from the seismic exploration. Explore the needs of the location of the collection station.
Therefore, if the carrier phase difference (RTK) technology can be applied to the ordinary GPS receiver, the low cost and high precision positioning of the GPS chip on the acquisition station and the solution of the time and cost problems in the 3D seismic exploration will be of profound significance. However, in the fierce international competition environment, the United States is in its own military, national defense and economic interests. In view of the above problems, this paper uses the common low price GPS-OEMSTAR development board, and develops an earthquake exploration with independent intellectual property rights through learning and studying the principle of the GPS ephemeris calculation and the carrier phase difference principle (RTK) in the static relative positioning of GPS. The special GPS data receiving technology, the GPS ephemeris calculation technique and the special GPS differential positioning technique for the seismic exploration are discussed, and the GPS differential positioning formula for the special GPS based on the OEMSTAR development board with independent intellectual property rights is derived. It needs to linearize the differential observation equation of the datum station and the flow station and eliminate the datum station and the mobile station. The carrier phase and clock difference related to the satellite and the receiver, and the corresponding error equation and the method equation are listed. According to the least square adjustment principle, the baseline vector is obtained. Through the known coordinates of the reference station, the common GPS positioning accuracy is raised from ten meters to the centimeter level, and the GPS data receiving software and the GPS data processing software are successfully developed. A set of special GPS differential positioning system for seismic exploration based on GPS OEMSTAR development board is completed, and the practicability and feasibility of the scheme are proved by receiving and processing actual data. At the same time, the low cost and high precision positioning of GPS is realized and the requirement of seismic exploration is met according to the characteristics of super GPS orderly arrangement in seismic exploration, and the base of this foundation is satisfied. On the base of this, the research of special GPS location method for 3D seismic exploration based on cloud computing is proposed. This method can solve the collection, storage and transmission of cloud in the GPS positioning cloud by developing high-speed parallel information synchronization acquisition mechanism, real-time GPS software signal processing and high performance exploration positioning model in three aspects. We study the problem of information cooperation, processing and scheduling in cloud services, establish a position cloud model for large-scale exploration and application, implement a high performance differential location method, complete the research of GPS positioning mechanism for large-scale exploration and provide technical support for the future development of 3D seismic exploration. On the basis of high precision positioning, we The idea of integration of seismic exploration positioning, acquisition and processing is put forward, and the first step static correction of seismic data processing is studied. A static correction method based on wave field extension which is suitable for both P wave and converted wave is obtained. The feasibility and effectiveness of the method are proved by simulation and actual data processing. In the process of processing, we use the special GPS differential positioning method for seismic exploration based on OEMSTAR development board to obtain the height data of the geophone corresponding to the surface of the earth, and apply it to the process of the continuation of the static correction, which has achieved good results. This also proves that the idea of integration of the location collection is correct.
This paper first summarizes and analyzes the problems of the time and cost of the current seismic exploration in GPS positioning technology, and points out the development needs of the future 3D seismic exploration for the positioning technology, and leads to the idea of using differential technology to realize low cost and high precision positioning of the common GPS chip, and outlines the construction of differential and domestic and foreign difference systems. The broad prospects of the GPS differential positioning system for seismic exploration are clarified. Then, the composition of the GPS satellite signals and the GPS satellite ephemeris are introduced and analyzed. The characteristics of the C/A code and the P code are summarized. The composition format of the GPS navigation message is explained. The specific significance of the ephemeris parameters and the specific significance of each parameter are introduced, which is the follow-up star. Based on the analysis of the errors in the GPS positioning, the necessity of the difference is pointed out, and the three difference methods, the position difference, the pseudo range difference and the carrier phase difference are explained, and their respective advantages and disadvantages are analyzed. On this basis, the GPS difference system for the future construction of the seismic exploration is proposed. The importance of the data link is given; then the GPS differential protocol RTCM message for the special seismic exploration is explained, and the text type 18,19 which is often used by the seismic exploration pseudo range difference and the message 20,21 which is often used by the phase difference of the seismic carrier phase is analyzed, and the similarities and differences of the 4 kinds of messages are summarized, and the parity check is based on the parity check. The process of coding and decoding of the special GPS difference protocol for seismic exploration is designed by method and bit transformation. The performance index, technical parameters, data interface and RINEX data format of OEMSTAR development board are introduced, and the GPS differential positioning formula for seismic exploration based on OEMSTAR development board is derived. It needs the reference station and the flow station. The difference observation equation linearized, eliminated the carrier phase and clock difference related to the datum station and the mobile station and the satellite and receiver, and listed the corresponding error equation and the method equation. On the basis of the least square adjustment principle, we put forward the study of the special GPS location method for the 3D seismic Exploration Based on the cloud calculation. The model of cloud computing is introduced to study the cloud collection, cloud storage, cloud transmission, cloud collaboration and cloud processing mechanism for the exploration cloud, to establish a cloud model for exploration and positioning, to realize the GPS differential high precision positioning processing method for exploration, to carry out actual simulation and experimental verification, and to develop a prototype system for the special GPS positioning method for large-scale exploration. To reduce the effect of the cost of large-scale GPS terminal, the receiving technology of GPS data is developed, the GPS ephemeris calculation technology is studied, and the GPS differential positioning algorithm for seismic exploration based on OEMSTAR development board is designed. Through actual experiments, the relative error of the front and the position of the northeast sky in the side, the northeast sky position and the northeast sky position are from the front. The algorithm has been proved in detail in several aspects, such as standard deviation, distance and blur drift rate. The conclusion of the algorithm is in centimeter level, and the stability of the algorithm is very high. It fully satisfies the demand of seismic exploration. It provides technical reserve for the application of GPS positioning method for large-scale exploration. On the other hand, we also put forward the idea of the integration of seismic exploration positioning, acquisition and processing, and studied the first step static correction of seismic data processing. A static correction method based on wave field extension which is applicable to both P and converted waves is obtained. The feasibility and effectiveness of the method are proved by simulation and actual data processing. In the process of actual data processing, we use the special GPS differential positioning method for seismic exploration based on OEMSTAR development board to obtain the height data of the geophone corresponding to the surface of the earth, and apply it to the process of the continuation of static correction, which has achieved good results. This also proves that the idea of integration of location acquisition and processing is correct.
Based on the research of low cost and high-precision positioning of GPS, the following achievements have been achieved.
(1) the GPS data receiving technology for seismic exploration based on OEMSTAR development board with independent intellectual property rights, seismic exploration GPS ephemeris technology, and GPS differential positioning technique for seismic exploration are developed.
(2) a special GPS differential positioning formula for seismic exploration based on OEMSTAR development board is derived. The coding and decoding process of the special GPS differential message for seismic exploration is designed, and the low cost and high precision positioning of the seismic exploration GPS is realized through practical experiments.
(3) developed a set of GPS data receiving software and GPS data processing software for seismic exploration based on OEMSTAR development board.
(4) a special GPS positioning technology for 3D seismic exploration based on cloud computing and the idea of integration of acquisition and processing equipment in future 3D seismic exploration are proposed, and the first step static correction of seismic data processing is studied. A static correction method based on wave field extension which is suitable for both P and converted waves is obtained, and the special GP for seismic exploration is used. The S differential positioning method obtains the height data corresponding to the surface of the geophone.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:P631.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 初東,王剛;GPS天線相位中心偏差的數(shù)學(xué)模型[J];測(cè)繪工程;2000年04期

2 孫正明;高井祥;王堅(jiān);;GPS廣播星歷誤差及對(duì)單點(diǎn)定位的影響[J];測(cè)繪工程;2007年06期

3 朱志宇,劉維亭,張冰;差分GPS載波相位整周模糊度快速解算方法[J];測(cè)繪科學(xué);2005年03期

4 周立;GPS廣播星歷誤差影響診斷與預(yù)測(cè)模型研究[J];測(cè)繪科學(xué);2005年04期

5 宋成;王飛雪;莊釗文;;基于遺忘因子最小二乘的GPS接收機(jī)鐘差預(yù)測(cè)算法研究[J];測(cè)繪科學(xué);2008年S3期

6 陳逸群,劉大杰;GPS接收機(jī)天線相位中心偏差的一種檢定與計(jì)算方法[J];測(cè)繪通報(bào);2000年12期

7 袁林果,黃丁發(fā),丁曉利,熊永良,鐘萍,李成鋼;GPS載波相位測(cè)量中的信號(hào)多路徑效應(yīng)影響研究[J];測(cè)繪學(xué)報(bào);2004年03期

8 李征航;全球定位系統(tǒng)(GPS)技術(shù)新進(jìn)展──第二講差分GPS[J];武測(cè)科技;1996年01期

9 張文山;;GPS測(cè)量誤差分析及控制[J];測(cè)繪與空間地理信息;2008年03期

10 李保杰;;GPS與傳統(tǒng)測(cè)量技術(shù)在地質(zhì)勘查中應(yīng)用比較[J];地理空間信息;2011年03期

相關(guān)博士學(xué)位論文 前4條

1 陳樹新;GPS整周模糊度動(dòng)態(tài)確定的算法及性能研究[D];西北工業(yè)大學(xué);2002年

2 袁運(yùn)斌;基于GPS的電離層監(jiān)測(cè)及延遲改正理論與方法的研究[D];中國科學(xué)院研究生院(測(cè)量與地球物理研究所);2002年

3 吳北平;GPS網(wǎng)絡(luò)RTK定位原理與數(shù)學(xué)模型研究[D];中國地質(zhì)大學(xué);2003年

4 章紅平;基于地基GPS的中國區(qū)域電離層監(jiān)測(cè)與延遲改正研究[D];中國科學(xué)院研究生院(上海天文臺(tái));2006年

相關(guān)碩士學(xué)位論文 前10條

1 文繼超;基于OEM板的差分GPS定位系統(tǒng)的研究與實(shí)現(xiàn)[D];中南大學(xué);2011年

2 董銳;基于神經(jīng)網(wǎng)絡(luò)的函數(shù)逼近方法研究[D];東北師范大學(xué);2011年

3 張九宴;GPS差分協(xié)議及基準(zhǔn)站算法研究[D];武漢大學(xué);2003年

4 范勝軍;顧及地磁場(chǎng)影響的電離層高階項(xiàng)改正算法研究[D];武漢大學(xué);2005年

5 牛國朋;單頻軟件GPS接收機(jī)設(shè)計(jì)與實(shí)現(xiàn)研究[D];中國科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2006年

6 何玉晶;GPS電離層延遲改正及其擾動(dòng)監(jiān)測(cè)的分析研究[D];解放軍信息工程大學(xué);2006年

7 徐周;GPS差分定位技術(shù)及實(shí)現(xiàn)方法的研究[D];解放軍信息工程大學(xué);2006年

8 徐敏;實(shí)時(shí)GPS軟件接收機(jī)研究與實(shí)現(xiàn)[D];上海交通大學(xué);2007年

9 袁翠;差分GPS算法及仿真研究[D];大連海事大學(xué);2007年

10 張旭;GPS載波相位定位算法研究與仿真[D];哈爾濱工程大學(xué);2007年



本文編號(hào):2163343

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/2163343.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶52bee***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com