天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

電動(dòng)汽車(chē)液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)研究

發(fā)布時(shí)間:2018-06-12 19:28

  本文選題:電動(dòng)汽車(chē) + 液壓儲(chǔ)能; 參考:《南京航空航天大學(xué)》2013年博士論文


【摘要】:發(fā)展電動(dòng)汽車(chē)是緩解能源危機(jī)、降低環(huán)境污染、實(shí)現(xiàn)低碳環(huán)保經(jīng)濟(jì)持續(xù)發(fā)展的重要途徑之一。鋰離子蓄電池由于具有較高的比能量、較大的比功率、較長(zhǎng)的循環(huán)使用壽命等優(yōu)勢(shì),越來(lái)越成為電動(dòng)汽車(chē)首選動(dòng)力源。但是在市區(qū)行駛的電動(dòng)汽車(chē),由于受到交通擁擠和數(shù)量眾多交通信號(hào)燈限制,被迫頻繁起步加速和制動(dòng)減速。起步加速時(shí)蓄電池組的大電流放電是導(dǎo)致鋰離子蓄電池組損壞的主要原因之一。為了提高能量利用效率,研究電動(dòng)汽車(chē)液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng),具有重要的理論和工程應(yīng)用價(jià)值。論文對(duì)電動(dòng)汽車(chē)液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)進(jìn)行了研究和探討,研制開(kāi)發(fā)了具有自主知識(shí)產(chǎn)權(quán)的電動(dòng)汽車(chē)液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)。該系統(tǒng)在車(chē)輛制動(dòng)時(shí)利用液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)回收制動(dòng)能,避免制動(dòng)能量的浪費(fèi);在車(chē)輛起步加速階段利用所儲(chǔ)存的液壓能驅(qū)動(dòng)車(chē)輛達(dá)到一定車(chē)速后再啟動(dòng)電動(dòng)機(jī),避免電動(dòng)機(jī)低速運(yùn)行時(shí)大電流耗電對(duì)鋰離子蓄電池組循環(huán)使用壽命的影響,并增加電動(dòng)汽車(chē)單次充電續(xù)航里程。建立了電動(dòng)汽車(chē)液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)參數(shù)模型,并驗(yàn)證了液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)模型的正確性。以并聯(lián)型的液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)作為研究對(duì)象,對(duì)液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)制動(dòng)能量回收和起步加速時(shí)能量釋放過(guò)程的泵/馬達(dá)、高壓蓄能器、車(chē)輛的受力等進(jìn)行了建模,得到了高壓蓄能器的容積、泵/馬達(dá)排量、液壓管路管徑、低壓油箱容積等參數(shù)。通過(guò)液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)試驗(yàn)驗(yàn)證了所選擇出容積的蓄能器以及所選排量的斜柱式泵/馬達(dá)等能夠滿足車(chē)輛制動(dòng)過(guò)程儲(chǔ)存能量的要求,并能夠把車(chē)輛從靜止加速到一定的速度,驗(yàn)證了所建立的液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)參數(shù)模型的正確性。依據(jù)十五循環(huán)工況(ECE)進(jìn)行了耗電量經(jīng)濟(jì)性仿真驗(yàn)證,在空載狀態(tài)和滿負(fù)荷狀態(tài)下使用液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)的電動(dòng)汽車(chē)驅(qū)動(dòng)電流峰值時(shí)間縮短,驅(qū)動(dòng)電流的平均值降低,單次充電行駛里程有效地提高。提出了液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)的車(chē)輛制動(dòng)過(guò)程不同工況下制動(dòng)控制策略,并進(jìn)行了仿真驗(yàn)證。在確保制動(dòng)性能的前提下,為了最大限度地回收制動(dòng)能量,把液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)的車(chē)輛制動(dòng)過(guò)程劃分成四種不同工況,即緩慢減速制動(dòng)、中等強(qiáng)度減速制動(dòng)、緊急制動(dòng)和滑行制動(dòng)。針對(duì)不同制動(dòng)工況進(jìn)行了相關(guān)的制動(dòng)力分配與控制策略研究,通過(guò)仿真研究,驗(yàn)證了所提出的控制策略正確性。設(shè)計(jì)完成了一種檢驗(yàn)鉛酸蓄電池性能和鋰離子蓄電池性能的電路,進(jìn)行了鉛酸蓄電池和鋰離子蓄電池相關(guān)工作特性試驗(yàn)研究。得到了鋰離子蓄電池組在允許放電范圍內(nèi)的內(nèi)阻值幾乎不隨放電電流及放電量的變化而變化,所允許的最低放電電壓不受負(fù)載的影響,單位時(shí)間內(nèi)所能釋放出來(lái)的電量幾乎不隨負(fù)載的變化而改變等規(guī)律。對(duì)蓄電池單體進(jìn)行了電壓精確測(cè)量,利用設(shè)計(jì)出的電路對(duì)蓄電池單體中電量較少的單體進(jìn)行補(bǔ)充充電。研制了液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)半物理仿真試驗(yàn)臺(tái)控制系統(tǒng),進(jìn)行了基于液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)半物理仿真試驗(yàn)研究。選擇抗干擾能力強(qiáng)的MC9S12XS128微處理器作為控制系統(tǒng)MCU,利用PM150CLA060作為大功率直流無(wú)刷電動(dòng)機(jī)的驅(qū)動(dòng)模塊,設(shè)計(jì)出直流無(wú)刷電動(dòng)機(jī)控制器。利用電動(dòng)機(jī)的霍爾傳感器進(jìn)行車(chē)速測(cè)量,對(duì)電磁離合器、液壓電磁閥進(jìn)行驅(qū)動(dòng)電路設(shè)計(jì),對(duì)壓力傳感器進(jìn)行數(shù)據(jù)采集。得到了不同制動(dòng)初速度時(shí)車(chē)輛的制動(dòng)能量回收率、制動(dòng)能量釋放率、制動(dòng)能量再生率。依據(jù)ECE循環(huán)工況,通過(guò)實(shí)測(cè)得到滿載時(shí)使用液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)前后車(chē)輛行駛百公里平均耗電量、蓄電池工作電流峰值、平均放電電流值等數(shù)據(jù)。分析得知液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)能夠有效地降低電動(dòng)汽車(chē)所用蓄電池組工作電流峰值,減小平均工作電流值,延長(zhǎng)車(chē)輛單次充電行駛里程,驗(yàn)證了液壓儲(chǔ)能制動(dòng)能量再生系統(tǒng)的有效性。
[Abstract]:The development of electric vehicles is one of the important ways to alleviate the energy crisis, reduce the environmental pollution and realize the sustainable development of low carbon and environmental protection economy. The lithium ion battery has become the first choice of power sources for electric vehicles because of its advantages of high specific energy, larger specific power, longer cycle life and so on. Because of the traffic congestion and the limited number of traffic signals, the car is forced to start and speed up and reduce the braking speed frequently. The large current discharge of the battery group is one of the main causes of damage to the lithium ion battery group when the starting acceleration is accelerated. It has important theoretical and engineering application value. This paper studies and discusses the braking energy regeneration system of electric vehicle hydraulic energy storage brake, and develops a hydraulic energy storage brake energy regeneration system for electric vehicles with independent intellectual property rights. The system uses hydraulic energy storage braking energy regeneration system to recover braking energy during vehicle braking. Avoid the waste of braking energy; use the stored hydraulic power to drive the vehicle to a certain speed and restart the motor in the initial acceleration stage of the vehicle, to avoid the influence of the large current consumption on the cycle life of the lithium ion battery group when the motor is running at low speed, and to increase the mileage of the electric vehicle in a single charge, and establish an electric vehicle. The parameter model of the hydraulic regenerative braking energy regeneration system is used to verify the correctness of the model of the hydraulic energy storage braking energy regeneration system. A parallel hydraulic energy storage braking energy regeneration system is used as the research object. The pump / motor of the braking energy recovery of the hydraulic energy storage braking energy regeneration system and the energy release process when the step is accelerated is high pressure. The accumulator and the force of the vehicle are modeled, and the volume of the high pressure accumulator, the displacement of the pump / motor, the hydraulic pipe diameter and the volume of the low pressure tank are obtained. Through the test of the hydraulic energy storage braking energy regeneration system, the selected volume accumulator and the inclined column pump / motor of the selected discharge capacity can meet the braking of the vehicle. The requirement of storage energy is stored and the vehicle can be accelerated from rest to a certain speed. The correctness of the parameters model of the hydraulic regenerative braking energy regenerative system is verified. Based on the fifteen cycle condition (ECE), the economic simulation verification of the power consumption is carried out, and the hydraulic energy storage braking energy is used in the empty and full load state. The peak time of the driving current of the electric vehicle is shortened, the average driving current is reduced, and the mileage of the single charge is improved effectively. The braking control strategy of the braking process of the hydraulic energy storage braking energy regeneration system under different operating conditions is put forward, and the simulation test is carried out. The maximum of the braking performance is to ensure the maximum braking performance. The braking energy is recovered to the limit, and the braking process of the hydraulic regenerative braking energy regeneration system is divided into four different working conditions, namely, slow deceleration braking, moderate deceleration braking, emergency braking and sliding braking. The related braking force distribution and control strategy are studied for different braking conditions, and the simulation is verified through simulation research. The proposed control strategy is correct. A circuit is designed to test the performance of lead-acid battery and the performance of lithium ion battery. The experimental study on the working characteristics of the lead-acid battery and lithium ion battery is carried out. The internal resistance of the lithium ion battery group in the allowable discharge range is almost not followed by the discharge current and discharge. The allowable minimum discharge voltage is not affected by the load. The energy released in unit time does not change with the change of the load. The voltage of the battery monomer is measured accurately, and the designed circuit is used to replenish the monomer in the battery monomer. The semi physical simulation test system based on hydraulic energy storage brake energy regeneration system is carried out in a semi physical simulation test system based on hydraulic energy storage braking system. The MC9S12XS128 microprocessor with strong anti-interference ability is selected as the control system MCU, and PM150CLA060 is used as the driving module of the high-power DC brushless motor. The DC brushless motor controller is used to measure the speed of the car with the Holzer sensor of the motor. The driving circuit of the electromagnetic clutch and the hydraulic solenoid valve is designed. The data acquisition of the pressure sensor is carried out. The braking energy recovery rate, the release rate of braking energy and the regenerative rate of braking energy are obtained when the initial speed of the brake is different. According to the ECE, the regenerative rate of braking energy is obtained. In the cycle condition, the average power consumption of a hundred kilometers, the peak value of the battery working current and the average discharge current value are obtained by using the hydraulic energy storage braking energy regeneration system with full load, and the analysis shows that the regenerative system of the hydraulic energy storage brake energy can effectively reduce the peak current peak of the battery group used in the electric vehicle. The system can reduce the average working current value and extend the mileage of single charging vehicle, which verifies the effectiveness of the hydraulic energy storage braking energy regeneration system.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:U463.5;U469.72

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 丁左武;王書(shū)林;趙偉軍;趙建華;屈敏;;鉛酸蓄電池相關(guān)特性的試驗(yàn)研究[J];蓄電池;2010年06期

2 施風(fēng)榮;;蓄電池高精度在線監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與研制[J];重慶科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2007年02期

3 雷娟;蔣新華;解晶瑩;;鋰離子電池組均衡電路的發(fā)展現(xiàn)狀[J];電池;2007年01期

4 苗冬梅;程新群;孫長(zhǎng)亮;王常波;;過(guò)充對(duì)電動(dòng)自行車(chē)用鋰離子電池安全性能的影響[J];電池;2009年02期

5 張寅孩;林俊;黎繼剛;;基于儲(chǔ)能電感對(duì)稱分布的動(dòng)態(tài)均衡充電的研究[J];電工技術(shù)學(xué)報(bào);2010年10期

6 劉志堅(jiān);汪艷;蔣寧懿;;高倍率鋰離子蓄電池設(shè)計(jì)的研究[J];電源技術(shù);2008年08期

7 王琴;趙暉;尚晉;馮嬋;;共殼體鋰離子蓄電池組性能研究[J];電源技術(shù);2010年10期

8 劉春娜;;電動(dòng)汽車(chē)電池應(yīng)用與展望[J];電源技術(shù);2011年01期

9 丁左武;趙東標(biāo);;鋰離子蓄電池相關(guān)特性試驗(yàn)研究[J];電源技術(shù);2011年07期

10 張超;徐國(guó)順;肖翼洋;;大容量鉛酸蓄電池組內(nèi)阻測(cè)量裝置設(shè)計(jì)與分析[J];電源技術(shù);2011年09期

相關(guān)博士學(xué)位論文 前7條

1 張冰戰(zhàn);插電式混合動(dòng)力電動(dòng)汽車(chē)能量管理策略研究[D];合肥工業(yè)大學(xué);2011年

2 武國(guó)良;電動(dòng)汽車(chē)用鎳氫電池剩余電量估計(jì)方法研究[D];哈爾濱工業(yè)大學(xué);2010年

3 于海芳;混合動(dòng)力汽車(chē)復(fù)合儲(chǔ)能系統(tǒng)參數(shù)匹配與控制策略研究[D];哈爾濱工業(yè)大學(xué);2010年

4 張緩緩;采用電動(dòng)輪驅(qū)動(dòng)的電動(dòng)汽車(chē)轉(zhuǎn)矩協(xié)調(diào)控制研究[D];吉林大學(xué);2009年

5 張曉峰;小型混合動(dòng)力車(chē)中電力驅(qū)動(dòng)裝置的若干關(guān)鍵技術(shù)研究[D];浙江大學(xué);2009年

6 鄭維;混合動(dòng)力汽車(chē)動(dòng)力總成參數(shù)匹配方法與控制策略的研究[D];哈爾濱工業(yè)大學(xué);2010年

7 趙國(guó)柱;電動(dòng)汽車(chē)再生制動(dòng)若干關(guān)鍵問(wèn)題研究[D];南京航空航天大學(xué);2012年

,

本文編號(hào):2010812

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/2010812.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ba0c6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com