機(jī)器人弧焊增材制造離線編程系統(tǒng)研究
本文選題:增材制造 + 分層切片。 參考:《哈爾濱工業(yè)大學(xué)》2014年碩士論文
【摘要】:基于弧焊的金屬材料增材制造具有成形效率高、成本低、容易控制、加工柔性大和制件規(guī)格限制小等優(yōu)點(diǎn)。開(kāi)發(fā)具有自主知識(shí)產(chǎn)權(quán)的增材制造軟件,對(duì)金屬材料增材制造的實(shí)際應(yīng)用與推廣具有重要意義。本文對(duì)增材制造離線編程系統(tǒng)中分層切片、路徑規(guī)劃和動(dòng)畫(huà)仿真等功能進(jìn)行了深入的研究。 在STL模型文件分層切片算法的基礎(chǔ)上,通過(guò)OpenGL自身功能函數(shù),實(shí)現(xiàn)STL模型切片的可視化;采用線結(jié)構(gòu)光三維檢測(cè)與傳感系統(tǒng)獲得三維點(diǎn)云數(shù)據(jù),經(jīng)過(guò)點(diǎn)云處理后,利用點(diǎn)云直接比較的方法獲得待加工零件部位的點(diǎn)云數(shù)據(jù),開(kāi)發(fā)一種點(diǎn)云模型切片算法實(shí)現(xiàn)點(diǎn)云的切片。在此基礎(chǔ)上,增添零件模型的再切片功能。 利用三維虛擬環(huán)境中對(duì)點(diǎn)拾取進(jìn)行片層區(qū)域劃分的方法,對(duì)待加工區(qū)域劃分為邊面環(huán)三種情況進(jìn)行路徑規(guī)劃,使復(fù)雜零件的層片加工難度降低;谶呅螤畹慕孛孑喞穆窂揭(guī)劃,主要判斷零件是否滿足邊形狀的要求,,對(duì)于二次曲線,則通過(guò)最小二乘法進(jìn)行曲線擬合。對(duì)于面形狀的截面輪廓,通過(guò)算法使凸多邊形和凹多邊形的截面輪廓數(shù)據(jù)有序化,形成閉合輪廓線。基于環(huán)形狀的截面輪廓的路徑規(guī)劃,對(duì)于簡(jiǎn)單的圓筒形工件,通過(guò)計(jì)算圓的方程進(jìn)行路徑規(guī)劃;對(duì)于普通的多邊形截面的筒形工件,通過(guò)獲得筒形工件內(nèi)層數(shù)據(jù)點(diǎn),采用輪廓偏移的方式直接形成路徑。 開(kāi)發(fā)KUKA機(jī)器人仿真程序模塊,通過(guò)增材制造軟件進(jìn)行焊接相關(guān)信息的獲取,利用OpenGL對(duì)窗口進(jìn)行渲染,在雙緩沖技術(shù)的前提下,滿足焊接相關(guān)參數(shù)的設(shè)定,進(jìn)行增材制造過(guò)程動(dòng)畫(huà)仿真;并且在仿真程序上添加輔助功能,實(shí)現(xiàn)仿真過(guò)程的視頻錄制和屏幕圖像保存,用于對(duì)增材制造過(guò)程形成感官認(rèn)識(shí),對(duì)零件設(shè)計(jì)階段起到驗(yàn)證作用,對(duì)零件加工過(guò)程起到參考作用,加深對(duì)生產(chǎn)過(guò)程和制造系統(tǒng)的認(rèn)識(shí)和理解,有利于對(duì)生產(chǎn)過(guò)程、制造系統(tǒng)整體進(jìn)行優(yōu)化配置。 結(jié)合增材制造離線編程系統(tǒng)進(jìn)行成形試驗(yàn),結(jié)果表明該系統(tǒng)功能較完備、使用方便、運(yùn)行穩(wěn)定可靠。
[Abstract]:Arc welding based metal material fabrication has the advantages of high forming efficiency, low cost, easy control, large flexibility and small specification limitation. It is of great significance for the practical application and popularization of metal material manufacturing to develop the material increasing manufacturing software with independent intellectual property rights. In this paper, the functions of delamination, path planning and animation simulation in off-line programming system are studied. Based on the layered slicing algorithm of STL model file, the visualization of STL model slicing is realized through the function of OpenGL, and the 3D point cloud data is obtained by the 3D detection and sensing system of linear structured light, which is processed by point cloud. The point cloud data of the parts to be processed are obtained by the method of point cloud direct comparison, and a point cloud model slicing algorithm is developed to realize the point cloud slicing. On this basis, the re-slicing function of the part model is added. In this paper, we use the method to partition the lamellar area of point pick-up in 3D virtual environment, and divide the processing area into edges. Face? In order to reduce the processing difficulty of complex parts, the path planning is carried out in three kinds of cases. Based on the path planning of section contour with edge shape, it mainly determines whether the part meets the requirements of edge shape. For conic, the curve fitting is carried out by least square method. For the cross-section contour of plane shape, the section contour data of convex polygon and concave polygon are ordered by the algorithm, and the closed contour line is formed. For simple cylindrical workpiece, path planning is carried out by calculating the equation of circle, and for cylindrical workpiece with common polygonal section, the inner layer data points of cylindrical workpiece are obtained. The contour offset is used to form the path directly. The simulation program module of KUKA robot is developed. The welding related information is acquired by the material adding software, and the window is rendered by OpenGL. Under the premise of double buffering technology, the welding related parameters are set. Animation simulation of the material increasing manufacturing process is carried out, and auxiliary function is added to the simulation program to realize video recording and screen image preservation of the simulation process, which is used to form sensory understanding of the material increasing manufacturing process and to verify the part design stage. It is helpful to optimize the configuration of production process and manufacturing system as a whole, and to deepen the understanding and understanding of production process and manufacturing system. The results show that the system has the advantages of complete function, convenient use, stable and reliable operation.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TP242;TG409
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉順洪,丁冬平,周龍?jiān)?彭善德;基于焊接機(jī)器人的三維快速成形的方法研究[J];電焊機(jī);2005年06期
2 徐亦唐;;基于最小二乘法的曲線擬合及其在Matlab中的應(yīng)用[J];電子世界;2013年10期
3 李滌塵;田小永;王永信;盧秉恒;;增材制造技術(shù)的發(fā)展[J];電加工與模具;2012年S1期
4 黃秋實(shí);李良琦;高彬彬;;國(guó)外金屬零部件增材制造技術(shù)發(fā)展概述[J];國(guó)防制造技術(shù);2012年05期
5 陳光霞;曾曉雁;王澤敏;關(guān)凱;彭昌吻;;選擇性激光熔化快速成型工藝研究[J];機(jī)床與液壓;2010年01期
6 陳鴻,程軍,祖靜;激光變長(zhǎng)線快速成型系統(tǒng)中的圖形分區(qū)算法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2001年06期
7 柯映林,王青;反求工程中的點(diǎn)云切片算法研究[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2005年08期
8 張嘉易,劉偉軍,王天然,劉英;快速成型數(shù)據(jù)處理系統(tǒng)研究[J];機(jī)械設(shè)計(jì)與制造;2004年03期
9 蔡冬根;周天瑞;吳海燕;;基于快速成型的CAD模型數(shù)據(jù)轉(zhuǎn)換之對(duì)比[J];制造業(yè)自動(dòng)化;2011年22期
10 王衛(wèi)東;;基于快速原型技術(shù)的產(chǎn)品成型研究[J];新技術(shù)新工藝;2011年02期
相關(guān)博士學(xué)位論文 前1條
1 杜乃成;弧焊機(jī)器人金屬快速成形研究[D];天津大學(xué);2009年
本文編號(hào):1872610
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/1872610.html