核主泵密封環(huán)復雜形面超精密磨削原理與方法研究
本文選題:核主泵 切入點:密封環(huán) 出處:《大連理工大學》2014年博士論文 論文類型:學位論文
【摘要】:核主泵是核電站中驅(qū)動高溫、高壓和有放射性的冷卻劑在堆芯和蒸汽發(fā)生器之間循環(huán)的核心設(shè)備,而密封環(huán)是保證核主泵安全、穩(wěn)定、可靠運行的重要零件。核主泵密封環(huán)通常由具有良好機械強度、耐磨損、耐高溫和耐化學腐蝕等優(yōu)異性能的氮化硅、氧化鋁、碳化硅和碳化鎢等高硬度材料制造,要求達到亞微米級的面形精度和納米級的表面粗糙度,加工難度極大,其核心制造技術(shù)只被國外少數(shù)幾家公司掌握和壟斷,因此研究新型的、有實用價值的密封環(huán)超精密加工原理和方法對核主泵的國產(chǎn)化具有重要意義。 本文針對核主泵高硬度材料密封環(huán)高精度復雜形面的加工難題,提出了采用杯形砂輪以線接觸方式磨削成形的原理和方法,并利用現(xiàn)有超精密磨床磨削密封環(huán)圓錐面對提出的原理和方法進行了實驗驗證。具體研究進展包括四個方面: (1)提出了采用杯形砂輪以線接觸方式磨削密封環(huán)曲面的新方法,建立了杯形砂輪線接觸式磨削環(huán)形曲面的數(shù)學模型并研究了其成形原理;通過求解定義域和定義特征點將砂輪圓周旋轉(zhuǎn)投影曲線分為7類,可據(jù)此求解生成曲面原理性面形誤差,以決定杯形砂輪相對工件空間位置參數(shù)的取值,為超精密機床的結(jié)構(gòu)設(shè)計提供理論依據(jù)。 (2)建立了基于四軸聯(lián)動機床以杯形砂輪線接觸式磨削密封環(huán)斜波紋面的數(shù)學模型,研究了機床結(jié)構(gòu)參數(shù)和運動參數(shù)對磨削斜波紋面原理性面形誤差的影響規(guī)律,提出了6種運動控制策略,并確定了原理性面形誤差可控制在10nm以內(nèi)的運動控制策略。 (3)對碳化鎢硬質(zhì)合金、無壓燒結(jié)碳化硅和反應(yīng)燒結(jié)碳化硅高硬度材料圓片進行了杯形金剛石砂輪線接觸式磨削實驗,通過觀察磨削表面微觀形貌以及測量磨削表面粗糙度和劃痕深度,研究了超精密磨削高硬度材料的表面質(zhì)量,發(fā)現(xiàn)選用粒度比2000#更細的金剛石砂輪時,可以獲得表面粗糙度Ra小于5nm的超光滑表面。 (4)利用現(xiàn)有的立軸超精密磨床,建立了杯形砂輪線接觸磨削密封環(huán)圓錐面的數(shù)學模型,分析了磨削表面錐度誤差和徑向輪廓誤差與砂輪主軸傾角(俯仰角和側(cè)偏角)的關(guān)系,提出利用平面平晶和激光位移傳感器高精度調(diào)整砂輪主軸傾角的方法,進行了磨削圓錐面的驗證實驗,磨削后的圓錐面錐度誤差為4.88μrad,徑向輪廓誤差為119.4nm,周向輪廓誤差為231.6nm,表面粗糙度Ra在2nm左右,加工精度和表面質(zhì)量均優(yōu)于其技術(shù)指標要求。 本論文的研究成果能夠為我國核主泵密封環(huán)超精密制造提供擁有自主知識產(chǎn)權(quán)的先進加工原理和方法,有望解決核主泵國產(chǎn)化進程中的一項重要難題、打破發(fā)達國家的技術(shù)控制和封鎖、提升我國大尺寸密封件高精度制造的技術(shù)水平和國際競爭力。
[Abstract]:The nuclear main pump is the core equipment that drives the circulation of high temperature, high pressure and radioactive coolant between the reactor core and the steam generator in the nuclear power plant, while the seal ring ensures the safety and stability of the nuclear main pump. The nuclear main pump seal ring is usually made of high hardness materials such as silicon nitride, alumina, silicon carbide and tungsten carbide, which have excellent properties such as good mechanical strength, wear resistance, high temperature resistance and chemical corrosion resistance. It is very difficult to process the surface shape precision of submicron scale and the surface roughness of nanometer scale. The core manufacturing technology is only controlled and monopolized by a few foreign companies. The principle and method of ultra-precision machining of sealing ring with practical value are of great significance to the localization of nuclear main pump. In this paper, aiming at the difficult problem of machining high precision complex surface of high hardness material seal ring of nuclear main pump, the principle and method of grinding forming with cup grinding wheel in line contact mode are put forward in this paper. The principle and method of grinding sealing ring conical face are verified by using the existing ultra-precision grinding machine. The specific research progress includes four aspects:. 1) A new method of grinding seal ring surface with cup wheel by linear contact is put forward, and the mathematical model of ring surface grinding with cup wheel is established and its forming principle is studied. By solving the domain of definition and defining characteristic points, the circumferential projection curve of grinding wheel can be divided into 7 categories, which can be used to solve the theoretical surface error of generating surface, and to determine the value of the spatial position parameter of cup wheel relative to the workpiece. It provides a theoretical basis for the structural design of ultra-precision machine tools. In this paper, a mathematical model of grinding seal ring skew corrugated surface with cup-shaped grinding wheel is established based on four-axis linkage machine tool. The influence of machine tool structure parameters and motion parameters on the principle surface error of grinding skew corrugated surface is studied. Six kinds of motion control strategies are proposed, and the motion control strategies in which the principle surface error can be controlled within 10 nm are determined. Experiments on wire contact grinding of tungsten carbide carbide, pressureless sintered silicon carbide and reaction-sintered silicon carbide high hardness material by wire contact grinding with cup diamond wheel were carried out. The surface quality of ultra-precision grinding materials with high hardness was studied by observing the micro-morphology of grinding surface and measuring the roughness and scratch depth of grinding surface. It was found that the diamond grinding wheel with finer grain size than 2000# was selected. The ultra-smooth surface with surface roughness Ra < 5 nm can be obtained. The mathematical model of grinding sealing ring cone surface by wire contact grinding with cup shaped grinding wheel is established by using the existing vertical axis ultra-precision grinding machine. The relationship between grinding surface taper error and radial contour error and grinding wheel spindle inclination angle (pitch angle and side deflection angle) is analyzed. A method of adjusting the spindle inclination of grinding wheel with high precision by using plane flat crystal and laser displacement sensor is put forward, and the verification experiment of grinding conical surface is carried out. After grinding, the taper error of conical surface is 4.88 渭 rad, the radial contour error is 119.4nm, the circumferential profile error is 231.6 nm, the surface roughness Ra is about 2nm, and the machining accuracy and surface quality are better than its technical requirements. The research results of this paper can provide advanced processing principles and methods with independent intellectual property rights for ultra-precision manufacturing of nuclear main pump seal ring in China, which is expected to solve an important problem in the process of localization of nuclear main pump. To break the technology control and blockade of developed countries and to improve the technical level and international competitiveness of high precision manufacturing of large size seals in China.
【學位授予單位】:大連理工大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TM623.4
【參考文獻】
相關(guān)期刊論文 前10條
1 屈偉平;;第三代核電技術(shù)及發(fā)展[J];電器工業(yè);2010年06期
2 楊旭紅;葉建華;錢虹;;我國核電產(chǎn)業(yè)的現(xiàn)狀及發(fā)展[J];上海電力學院學報;2008年03期
3 胡亞蕾;核電先進堆型與我國核電發(fā)展[J];中國工程科學;2005年11期
4 陶果;;APl000主泵屏蔽電機電感參數(shù)的初步分析[J];電工技術(shù);2012年09期
5 林曉輝;王振忠;郭隱彪;姜濤;張東旭;;光學非球面磨削中的圓弧砂輪修整誤差分析[J];兵工學報;2013年01期
6 查體建;許黎明;羅睿;解斌;時輪;;杯形砂輪磨削高硬度球面砂輪磨損的研究[J];工具技術(shù);2013年02期
7 劉瑩,陳志新;準分子激光加工陶瓷表面形貌的分形特性[J];湖北工學院學報;2002年04期
8 ;Fluid-solid strong-interaction model of mechanical seals in reactor coolant pumps[J];Science China(Technological Sciences);2011年09期
9 陳卓;魏昕;任慶磊;謝小柱;;大尺寸硅片自旋轉(zhuǎn)磨削運動分析及仿真[J];金剛石與磨料磨具工程;2009年05期
10 閆胤洲;季凌飛;鮑勇;蔣毅堅;;高硬脆陶瓷激光加工技術(shù)的研究及進展[J];激光雜志;2008年06期
相關(guān)博士學位論文 前3條
1 劉鑫;核主泵用流體動靜壓型機械密封的性能研究與端面型槽優(yōu)化設(shè)計[D];浙江工業(yè)大學;2012年
2 周旭光;非球面軌跡包絡(luò)磨削加工機理研究[D];廣東工業(yè)大學;2013年
3 歐鳴雄;AP1000海水循環(huán)泵研制及其內(nèi)流場特性研究[D];江蘇大學;2013年
,本文編號:1616781
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/1616781.html