農(nóng)桿菌活體轉(zhuǎn)化技術(shù)的優(yōu)化與高抗草甘膦棉種質(zhì)的創(chuàng)制
本文關(guān)鍵詞: 棉花 草甘膦 EPSPS-G6 農(nóng)桿菌活體轉(zhuǎn)化方法 草甘膦抗性 產(chǎn)量 纖維品質(zhì) 出處:《浙江大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:棉花是唯一可由種子生產(chǎn)纖維的農(nóng)作物,棉花生產(chǎn)需要投入較多勞動(dòng)力。由于勞動(dòng)力的轉(zhuǎn)移,我國的人工價(jià)格不斷上漲,植棉的比較效益和經(jīng)濟(jì)效益下降,導(dǎo)致近年我國棉花生產(chǎn)的連年滑坡。我國的棉花生產(chǎn)仍以人工作業(yè)為主,其中棉田除草是植棉用工的主要內(nèi)容之一,占植棉用工的1/3以上。草甘膦(Glyphosate)是一種典型的廣譜性、內(nèi)吸傳導(dǎo)型滅生性除草劑,是雜草控制的首選除草劑。本研究將具有自主知識產(chǎn)權(quán)的抗草甘膦除草劑基因(EPSPS-G6)構(gòu)建進(jìn)植物表達(dá)載體,用農(nóng)桿菌活體轉(zhuǎn)化方法將目的基因轉(zhuǎn)入陸地棉推廣品種中棉所49,創(chuàng)制高抗草甘膦棉花種質(zhì)系,分析其抗性表現(xiàn)及相關(guān)農(nóng)藝性狀,探討其生產(chǎn)應(yīng)用前景。主要研究結(jié)果如下:1、利用本實(shí)驗(yàn)室構(gòu)建的表達(dá)載體pCAMBIA1300-EPSPS-G6,酶切獲得目的基因EPSPS-G6.并與空載體pCAMBIA2301連接構(gòu)建棉花高效表達(dá)載體——pCAMBIA2301-EPSPS-G6,去除原載體中的NPII篩選標(biāo)記基因,將目的基因作為篩選標(biāo)記。2、對本實(shí)驗(yàn)室創(chuàng)制的農(nóng)桿菌活體轉(zhuǎn)化方法進(jìn)行優(yōu)化。結(jié)果表明,含50mg/L乙酰丁香酮(acetosyringone,AS)的轉(zhuǎn)化液可將陽性率提高至22.18%,是對照(9.72%)的2.28倍。此外,不同轉(zhuǎn)化時(shí)間轉(zhuǎn)化效率差異顯著,其中開花當(dāng)天中午12:00~14:00轉(zhuǎn)化得到陽性率最高(22.18%),下午13:00~15:00次之(18.86%),上午8:00~10:00轉(zhuǎn)化效率最低(11.29%)。3、采用優(yōu)化的農(nóng)桿菌活體轉(zhuǎn)化方法,將EPsPS-G6基因?qū)氲疥懙孛尥茝V品種——中棉所49,共收獲轉(zhuǎn)化種子14.3 kg,T0轉(zhuǎn)化植株經(jīng)20 mM草甘膦噴施,陽性率達(dá)22.18%。經(jīng)PCR驗(yàn)證,共獲得了35株含EPSPS-G6基且抗草甘膦的To轉(zhuǎn)基因植株。4、T1轉(zhuǎn)基因后代的抗性分離比例從1/4-3/4不等。對T1陽性植株進(jìn)行自交,按單株收獲,T2抗性穩(wěn)定材料占19.8~32.1%,基本符合一對雜合基因分離的規(guī)律。5、田間草甘膦抗性水平和莽草酸含量結(jié)果表明,轉(zhuǎn)EPSPS-G6基因棉花種質(zhì)系可抗3倍以上的推薦濃度,其抗性水平明顯優(yōu)于美國抗草甘膦品種和本實(shí)驗(yàn)室創(chuàng)制的第一代抗草甘膦棉花種質(zhì)系,其中EPSPSG6-501種質(zhì)系抗草甘膦的能力最強(qiáng)。6、轉(zhuǎn)EPSPS-G6基因棉花種質(zhì)系籽棉產(chǎn)量、皮棉產(chǎn)量、衣分均與中棉所49近似;鈴重、籽指略高于對照;株高與對照近似;果枝數(shù)略低于對照;單株鈴數(shù)與對照一致。纖維品質(zhì)檢測結(jié)果表明,轉(zhuǎn)EPSPS-G6基因棉花種質(zhì)系的纖維長度和整齊度略優(yōu)于對照;馬克隆值與對照在同一品級且略好于對照;伸長率略低于對照;斷裂比強(qiáng)度與對照相同。說明外源基因?qū)τ谵D(zhuǎn)基因棉花種質(zhì)系的產(chǎn)量、農(nóng)藝性狀和纖維品質(zhì)無明顯影響。7、調(diào)查了金華地區(qū)的雜草發(fā)生情況與防控成本,為抗草甘膦棉花品種的應(yīng)用提供依據(jù)。結(jié)果表明,金華地區(qū)棉田雜草以牛筋草、馬齒莧和小飛蓬為主,化學(xué)除草可節(jié)省植棉除草用工開支約1000元/畝,抗草甘膦棉花品種的生產(chǎn)應(yīng)用可取得顯著的經(jīng)濟(jì)效益,具有廣闊的生產(chǎn)應(yīng)用前景。
[Abstract]:Cotton is the only crop that can produce fiber by seed. Cotton production needs more labor force. Due to the transfer of labor force, the labor price of our country is rising, and the comparative benefit and economic benefit of cotton planting are decreased. In recent years, cotton production in China has been declining year after year. The cotton production in China is still dominated by manual work, among which weeding in cotton fields is one of the main contents of cotton planting. Glyphosate of glyphosate is a typical broad-spectrum, endo-absorption-conductive herbicide. In this study, EPSPS-G6, a glyphosate resistant herbicide gene with independent intellectual property rights, was constructed into plant expression vector. Using Agrobacterium tumefaciens transformation method, the target gene was transferred to Zhongmiansuo 49, a upland cotton extension variety, to create germplasm lines with high resistance to glyphosate, and to analyze its resistance and related agronomic characters. The main results are as follows: 1, using the expression vector pCAMBIA1300-EPSPS-G6 constructed in our laboratory. The target gene EPSPS-G6 was digested and ligated with empty vector pCAMBIA2301 to construct pCAMBIA2301-EPSPS-G6. The NPII screening marker gene was removed from the original vector and the target gene was used as the screening marker. 2. The transformation method of Agrobacterium tumefaciens was optimized. The conversion solution containing 50 mg / L acetosyringone AS) could increase the positive rate to 22.18, 2.28 times as much as that of the control group (9.72%). There were significant differences in transformation efficiency among different transformation times, and the highest positive rate was obtained at 12: 00: 14: 00 at noon on the flowering day. At 13: 00 in the afternoon, 15: 00 followed by 18.860.The conversion efficiency of 8: 00 to 10: 00 in the morning was the lowest, 11.29 and 3, and the optimized transformation method of Agrobacterium tumefaciens in vivo was adopted. The EPsPS-G6 gene was introduced into the upland cotton cultivar Zhongmiansuo 49, and the transformed seeds were harvested and transformed by spraying glyphosate with 20mm glyphosate. The positive rate was 22.18%. 35 transgenic plants containing EPSPS-G6 and glyphosate resistant to glyphosate were obtained by PCR. The percentage of resistance segregation of T1 transgenic progenies ranged from 1 / 4 to 3 / 4. For T1 positive plants, 19.832. 1% of the resistant stable materials were harvested per plant. The results of glyphosate resistance level and shikimic acid content showed that transgenic cotton germplasm lines with EPSPS-G6 gene could resist more than 3 times the recommended concentration. Its resistance level was obviously superior to that of the American glyphosate resistant variety and the first generation of glyphosate resistant cotton germplasm developed in our laboratory, and the EPSPSG6-501 germplasm line had the strongest resistance to glyphosate. The yield of seed cotton, lint yield and lint percentage of cotton germplasm lines with EPSPS-G6 gene were similar to those of Zhongmiansuo 49. The boll weight and seed index were slightly higher than those of the control. Plant height was similar to that of control. The number of fruit branches was slightly lower than that of the control. The results of fiber quality test showed that the fiber length and uniformity of cotton germplasm lines with EPSPS-G6 gene were slightly better than that of the control. The micronaire value was in the same grade as the control and was slightly better than that of the control. The elongation was slightly lower than that of the control. The breaking ratio intensity was the same as that of the control. The results showed that exogenous gene had no significant effect on yield, agronomic characters and fiber quality of transgenic cotton germplasm lines. The occurrence and control cost of weeds in Jinhua area were investigated. The results showed that the main weeds in cotton field in Jinhua area were Herba canola, Portulaca oleracea and Prunus vulgaris, and chemical weeding could save about 1000 yuan per mu in the cost of weeding and weeding. The production and application of glyphosate resistant cotton varieties can obtain remarkable economic benefits and have a broad prospect of production and application.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:S562
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 華水金;袁淑娜;邵明彥;倪密;王學(xué)德;蔣立希;祝水金;;抗草甘膦棉花研究進(jìn)展[J];分子植物育種;2007年04期
2 楊子山;;抗草甘膦大豆對抗草甘膦棉花的干擾作用[J];中國棉花;2009年11期
3 蘇少泉;抗草甘膦作物的創(chuàng)制與發(fā)展[J];世界農(nóng)業(yè);2004年03期
4 王宏偉;梁業(yè)紅;史振聲;張世煌;;作物抗草甘膦轉(zhuǎn)基因研究概況[J];作物雜志;2007年04期
5 蘇少泉;;抗草甘膦作物的發(fā)展與草甘膦使用中若干問題[J];農(nóng)藥研究與應(yīng)用;2007年04期
6 葉萱;;草甘膦對抗草甘膦轉(zhuǎn)基因作物病害的作用[J];世界農(nóng)藥;2008年04期
7 卜貴軍;劉洪梅;李英;崔琳;王學(xué)東;;草甘膦對大豆超微結(jié)構(gòu)及光合指標(biāo)影響的研究[J];電子顯微學(xué)報(bào);2008年04期
8 楊子山;;二代抗草甘膦棉田長芒莧化除適期試驗(yàn)[J];中國棉花;2009年09期
9 蘇少泉;;轉(zhuǎn)基因抗草甘膦作物的新進(jìn)展[J];現(xiàn)代農(nóng)藥;2009年06期
10 朱元招;王鳳來;尹靖東;;抗草甘膦大豆及豆粕營養(yǎng)成分和抗?fàn)I養(yǎng)因子研究[J];營養(yǎng)學(xué)報(bào);2010年02期
相關(guān)會(huì)議論文 前10條
1 韓思寧;金龍國;陶波;邱麗娟;;抗草甘膦真菌的分離及其抗性基因的表達(dá)[A];第23屆全國大豆科研生產(chǎn)研討會(huì)論文摘要集[C];2012年
2 劉東軍;張銳;孟志剛;郭紅媛;程海剛;王成社;郭三堆;;抗草甘膦基因突變體的克隆及表達(dá)[A];全國作物生物技術(shù)與誘變技術(shù)學(xué)術(shù)研討會(huì)論文摘要集[C];2005年
3 劉東軍;張銳;孫國清;閆喜中;胡建斌;王成社;郭三堆;;抗草甘膦基因的克隆及其在在棉花中的表達(dá)[A];全國作物生物技術(shù)與誘變技術(shù)學(xué)術(shù)研討會(huì)論文摘要集[C];2005年
4 魏守輝;李香菊;張朝賢;黃紅娟;崔海蘭;;抗草甘膦雜草發(fā)生現(xiàn)狀及轉(zhuǎn)基因大豆田草害治理策略[A];糧食安全與植保科技創(chuàng)新[C];2009年
5 劉琦;李希臣;劉昭軍;雷勃鈞;;抗草甘膦轉(zhuǎn)基因大豆基因漂移的研究[A];第五次全國植物分子育種代表大會(huì)暨學(xué)術(shù)交流會(huì)論文集[C];2008年
6 楊兆光;劉亞平;肖遠(yuǎn)龍;;抗草甘膦棉花的雜種優(yōu)勢研究[A];中國棉花學(xué)會(huì)2013年年會(huì)論文集[C];2013年
7 郝獻(xiàn)領(lǐng);李志強(qiáng);張敏;陳洪濤;張延忠;李澤田;;室內(nèi)對轉(zhuǎn)基因抗草甘膦棉花品系鑒定方法[A];中國棉花學(xué)會(huì)2013年年會(huì)論文集[C];2013年
8 頓保慶;金丹;梁愛敏;陸偉;林敏;;新型高抗草甘膦EPSP合酶基因的拆分和重建[A];2005熱帶亞熱帶微生物資源的遺傳多樣性與基因發(fā)掘利用研討會(huì)論文集[C];2005年
9 潘愛虎;張大兵;潘良文;陳家華;袁政;梁婉琪;;轉(zhuǎn)基因抗草甘膦油菜的實(shí)用PCR檢測方法[A];全國作物細(xì)胞工程與分子技術(shù)育種學(xué)術(shù)研討會(huì)論文集[C];2003年
10 朱元招;李德發(fā);尹靖東;王鳳來;;抗草甘膦轉(zhuǎn)基因大豆PCR定量檢測研究[A];中國畜牧獸醫(yī)學(xué)會(huì)2004學(xué)術(shù)年會(huì)暨第五屆全國畜牧獸醫(yī)青年科技工作者學(xué)術(shù)研討會(huì)論文集(上冊)[C];2004年
相關(guān)重要報(bào)紙文章 前3條
1 方舟子;神秘的“不明病原體”[N];新華每日電訊;2013年
2 本報(bào)記者 馬愛平;我國抗除草劑轉(zhuǎn)基因技術(shù)突破重圍[N];科技日報(bào);2012年
3 實(shí)習(xí)記者 江華;2,4-滴展現(xiàn)新空間[N];農(nóng)資導(dǎo)報(bào);2012年
相關(guān)博士學(xué)位論文 前3條
1 趙特;一種抗草甘膦基因的發(fā)現(xiàn)和抗草甘膦轉(zhuǎn)基因水稻的培育[D];浙江大學(xué);2008年
2 金丹;新型高抗草甘膦EPSPS基因的克隆及草甘膦N-乙酰轉(zhuǎn)移酶的活性位點(diǎn)鑒定[D];四川大學(xué);2007年
3 燕樹鋒;轉(zhuǎn)基因抗草甘膦棉花種質(zhì)系的創(chuàng)造及利用[D];浙江大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 黃潔瓊;農(nóng)桿菌活體轉(zhuǎn)化技術(shù)的優(yōu)化與高抗草甘膦棉種質(zhì)的創(chuàng)制[D];浙江大學(xué);2016年
2 譚苗苗;轉(zhuǎn)g10evo基因抗草甘膦大豆的研究[D];浙江大學(xué);2016年
3 劉吉燾;棉花抗草甘膦基因的初步定位及草甘膦誘導(dǎo)花粉不育的生理生化特性研究[D];南京農(nóng)業(yè)大學(xué);2013年
4 李敬娜;農(nóng)桿菌介導(dǎo)的抗草甘膦基因玉米遺傳轉(zhuǎn)化研究[D];海南大學(xué);2010年
5 趙哲;轉(zhuǎn)基因抗草甘膦大豆對草甘膦代謝產(chǎn)物(AMPA)的生理反應(yīng)[D];東北農(nóng)業(yè)大學(xué);2012年
6 楚宗艷;棉花抗草甘膦基因的表達(dá)及功能鑒定[D];中國農(nóng)業(yè)科學(xué)院;2008年
7 卜貴軍;草甘膦對大豆葉片生理和形態(tài)結(jié)構(gòu)的影響[D];東北農(nóng)業(yè)大學(xué);2009年
8 董流昕;轉(zhuǎn)基因抗草甘膦大豆參比分子的構(gòu)建[D];北京林業(yè)大學(xué);2005年
9 李衛(wèi)國;棉花抗草甘膦體細(xì)胞無性系變異篩選技術(shù)研究[D];華中農(nóng)業(yè)大學(xué);2008年
10 于海濤;抗草甘膦真菌的分離及EPSPS基因克隆與表達(dá)研究[D];東北農(nóng)業(yè)大學(xué);2012年
,本文編號:1441977
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/1441977.html