幾何大變形桁架結(jié)構(gòu)離散變量?jī)?yōu)化設(shè)計(jì)
[Abstract]:In this paper, a discrete variable optimization algorithm of truss structure based on ANSYS platform is developed by using the secondary development function of ANSYS platform and the idea of "relative difference quotient method", and the corresponding ANSYS secondary development program is worked out. It is proved by many examples that the program has high calculation efficiency and good convergence of optimization results. It also proves the feasibility and validity of the discrete variable optimization design of truss structure under ANSYS platform according to the idea of this paper. In addition, this paper presents a new numerical algorithm for the calculation and analysis of geometric large deformation and large span truss structures. In engineering, some long-span structures often produce relatively large geometric deformation due to the special structure or shape of the structure and the characteristics of the working load, but the absolute amount is still small, and the normal operation should be ensured. A linear relationship between stress and strain should be required. The nonlinear theory of geometric large deformation must be applied to the analysis and calculation of this kind of structures. The traditional method of calculating and analyzing this kind of problem is to apply the principle of minimum potential energy to replace the approximate expression of nonlinear geometric equation with large deformation and the linear stress-strain relation into the functional of total potential energy. The functional expression of node displacement is obtained by discretization, and the Euler equation on node displacement is obtained according to the minimization condition of total potential energy, that is, the nonlinear equilibrium equation of node displacement. Because the equation is listed by the deformed node displacement, it is unified and coordinated with the deformation state, but as the equilibrium equation is a nonlinear function of displacement, it is very difficult to solve, especially for complex structures with multiple degrees of freedom. Based on the secondary development of ANSYS platform, the idea of large deformation analysis in this paper is as follows: the two-step iterative approximation is used to harmonize the equilibrium state with the deformation state, and the equilibrium equation and its solution after deformation are established and solved. That is to say, the continuous equation for calculating the displacement of the node is established and solved by the internal force of the known member, and then the equilibrium equation for calculating the internal force of the member is established and solved by the known displacement of the node. Through multiple iterations, the exact solution of nonlinear large deformation structure analysis is obtained, in which the equilibrium state and the deformation state are coordinated and unified. Since the method in this paper only needs to do one structural analysis in the process of geometric large deformation analysis, this point has obvious advantages in the structural optimization design of geometric large deformation. Therefore, the idea of discrete variable optimization design of geometric large deformation truss structure is put forward, and the corresponding analysis is made for flat truss and large span truss. By compiling the corresponding ANSYS secondary development program, the validity, accuracy and efficiency of the proposed method are verified by numerical examples. It is worth mentioning that the analysis of large deformation in this paper can degenerate and analyze the geometric small deformation of truss structures.
【學(xué)位授予單位】:同濟(jì)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2008
【分類號(hào)】:TU323.4
【相似文獻(xiàn)】
相關(guān)會(huì)議論文 前10條
1 吳杰;劉振華;龔銘;張其林;;張弦梁結(jié)構(gòu)優(yōu)化設(shè)計(jì)研究[A];第三屆全國現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2003年
2 黃遠(yuǎn);李林安;劉文西;;醫(yī)用不銹鋼支架的非線性有限元分析[A];2000年材料科學(xué)與工程新進(jìn)展(上)——2000年中國材料研討會(huì)論文集[C];2000年
3 張希;姚振漢;;MLPG方法在二維幾何非線性問題中的應(yīng)用[A];北京力學(xué)會(huì)第11屆學(xué)術(shù)年會(huì)論文摘要集[C];2005年
4 吳杰;張其林;;基于混合變量的預(yù)張力結(jié)構(gòu)優(yōu)化設(shè)計(jì)研究[A];第六屆全國現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2006年
5 李利;智浩;李同進(jìn);于海蓉;龔奎成;;風(fēng)洞柔壁噴管中柔板的數(shù)值計(jì)算[A];第二屆中國CAE工程分析技術(shù)年會(huì)論文集[C];2006年
6 崔玉紅;翟雅斌;李文嬌;;方形孔結(jié)構(gòu)支架非線性流固耦合數(shù)值計(jì)算[A];第九屆全國生物力學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2009年
7 張銳;尚新春;;熱彈性材料的空化問題研究[A];北京力學(xué)會(huì)第十六屆學(xué)術(shù)年會(huì)論文集[C];2010年
8 馮啟民;高惠瑛;;穿過沉陷區(qū)的埋地管線反應(yīng)分析[A];中國地震學(xué)會(huì)第六次學(xué)術(shù)大會(huì)論文摘要集[C];1996年
9 鄭國發(fā);;空間懸索結(jié)構(gòu)超級(jí)單元分析法[A];全國索結(jié)構(gòu)學(xué)術(shù)交流會(huì)論文集[C];1991年
10 李澤;朱志華;;弓式張弦梁結(jié)構(gòu)設(shè)計(jì)及實(shí)驗(yàn)[A];第六屆全國現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2006年
相關(guān)博士學(xué)位論文 前2條
1 趙旭峰;擠壓性圍巖隧道施工時(shí)空效應(yīng)及其大變形控制研究[D];同濟(jì)大學(xué);2007年
2 董科;波在壓電層合結(jié)構(gòu)和碳納米管中的傳播特性[D];上海交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 陳慶;幾何大變形桁架結(jié)構(gòu)離散變量?jī)?yōu)化設(shè)計(jì)[D];同濟(jì)大學(xué);2008年
2 秦慶華;三跨連續(xù)壓力管道經(jīng)受側(cè)向撞擊損傷與破壞的研究[D];太原理工大學(xué);2004年
3 吳少平;固體力學(xué)中單位分解方法的研究[D];浙江大學(xué);2007年
4 謝海濤;輸電塔結(jié)構(gòu)優(yōu)化方法研究[D];哈爾濱工程大學(xué);2007年
5 唐菁菁;基于UMAT子程序的織物片變形的幾何非線性分析[D];天津大學(xué);2007年
6 黃孝強(qiáng);深水鋪管船管道力學(xué)特性研究[D];大連理工大學(xué);2008年
7 陳峰;80噸履帶式起重機(jī)臂架的有限元分析[D];吉林大學(xué);2009年
8 胡巍瑋;有缺陷懸臂梁在階躍沖擊荷載作用下的剛塑性分析[D];同濟(jì)大學(xué);2006年
9 林恩強(qiáng);流體—結(jié)構(gòu)耦合數(shù)值方法研究及其應(yīng)用[D];昆明理工大學(xué);2007年
10 郭小東;大型油船結(jié)構(gòu)優(yōu)化設(shè)計(jì)研究[D];江蘇科技大學(xué);2006年
,本文編號(hào):2225636
本文鏈接:http://sikaile.net/falvlunwen/sflw/2225636.html