基于監(jiān)測(cè)數(shù)據(jù)的風(fēng)力發(fā)電機(jī)故障預(yù)警研究
[Abstract]:In recent years, with the worsening of environmental pollution and energy crisis, renewable clean energy, such as wind energy, has attracted much attention from all over the world because of its rich reserves and no pollution. Wind turbine is developing rapidly in our country. As a kind of rotating mechanical equipment, wind turbine has more parts and more complicated structure. At the same time, the wind turbine works in the environment with few people and bad natural conditions, which leads to frequent faults and frequent maintenance of the wind farm. Therefore, how to use intelligent monitoring means to reduce the number of fan failures to achieve the purpose of saving the operating costs of wind farms is an important issue that most wind farms need to solve. Based on this background, it is of great significance to carry out the research of fan fault warning and remote monitoring by intelligent means. This paper firstly studies the research status of wind turbine fault early warning and fault diagnosis at home and abroad, then analyzes the working principle, components and typical faults of the fan, and summarizes the causes of the fault. Finally, the correlation in data mining technology is used to extract the relevant rules, and the relevant rules are saved in the database, and the fault matching is realized by the query function. By collecting the monitoring data of the SCADA system, the correlation coefficient between the data is calculated, the related parameters affecting the temperature of the wind turbine are analyzed, and the relevant variable sets are set up. On this basis, a fault warning model based on wind turbine temperature is established. The validity of the early warning model of fan temperature fault is verified by the residual analysis of the predicted value and the actual value. Based on the actual situation of Faku wind farm in Liaoning Longyuan Wind Power Co., Ltd, this paper briefly explains the design idea of remote monitoring fan, and explains in detail how to realize this method, including data mining, data acquisition, data transmission, etc. Data storage, data release and monitoring, as well as the framework of the entire communication, the final implementation of the user's mobile phone APP to monitor the operation of wind farms and the implementation of security protection. It plays a guiding role in the design of other monitoring systems and lays a foundation for the development of related software in the future.
【學(xué)位授予單位】:沈陽工程學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 史利娟;張春芝;陳金英;李兆坤;;基于Labview的礦用主風(fēng)機(jī)溫度監(jiān)測(cè)系統(tǒng)的研究[J];煤礦機(jī)械;2016年01期
2 芮曉明;張穆勇;霍娟;;試運(yùn)行期間風(fēng)電機(jī)組平均故障間隔時(shí)間的估計(jì)[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年21期
3 孫玉彬;金聲超;梁培沛;曹彬;;油液監(jiān)測(cè)技術(shù)在風(fēng)電機(jī)組中的應(yīng)用分析[J];風(fēng)能;2014年02期
4 肖運(yùn)啟;王昆朋;賀貫舉;孫燕平;楊錫運(yùn);;基于趨勢(shì)預(yù)測(cè)的大型風(fēng)電機(jī)組運(yùn)行狀態(tài)模糊綜合評(píng)價(jià)[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年13期
5 葉盛;李龍;胡旭馗;;基于數(shù)據(jù)挖掘風(fēng)力發(fā)電設(shè)備故障遠(yuǎn)程診斷研究[J];風(fēng)能;2013年07期
6 郭鵬;李淋淋;馬登昌;;基于IPSO-BP的風(fēng)電機(jī)組齒輪箱狀態(tài)監(jiān)測(cè)研究[J];太陽能學(xué)報(bào);2012年03期
7 趙勇明;蔣曙光;吳征艷;邵昊;韓子維;遲洪有;;礦井主要通風(fēng)機(jī)工況監(jiān)測(cè)系統(tǒng)研究[J];煤礦機(jī)械;2012年01期
8 郭鵬;David Infield;楊錫運(yùn);;風(fēng)電機(jī)組齒輪箱溫度趨勢(shì)狀態(tài)監(jiān)測(cè)及分析方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2011年32期
9 黃浩;張沛;;美國(guó)新能源發(fā)展概況[J];電網(wǎng)技術(shù);2011年07期
10 張照煌;丁顯;劉曼;曾菊瑛;;基于小波變換的風(fēng)電機(jī)組傳動(dòng)系統(tǒng)故障診斷與分析[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào);2011年S1期
,本文編號(hào):2339774
本文鏈接:http://sikaile.net/falvlunwen/gongsifalunwen/2339774.html